logo

SCIENTIA SINICA Chimica, Volume 49 , Issue 6 : 861-876(2019) https://doi.org/10.1360/N032018-00206

Recent progress on controllable fabrication of bubble-propelled functional micromotors

More info
  • ReceivedSep 7, 2018
  • AcceptedOct 15, 2018
  • PublishedDec 24, 2018

Abstract

Bubble-propelled functional micromotors that can decompose chemicals into bubbles to power their locomotion for enhanced mixing and mass transfer have shown unique advantage and great power for applications such as pollution treatment, drug delivery, environment detection, separation, and disease diagnosis. The key for the micromotor fabrication is how to create asymmetric structures in the micromotors. This review highlights recent progress on controllable fabrication of novel bubble-propelled functional micromotors with versatile structures and functions. Emphases are focused on design and fabrication of the functional micromotors with structures such as microparticulate and microtubular structures based on creation of asymmetric structures, and on elaborate integration of diverse functional components and structures in the micromotors for achieving advanced functions. This review provides new strategies and guidelines for design and controllable fabrication of novel bubble-propelled functional micromotors with advanced structures and functions.


Funded by

国家自然科学基金(21576167)

四川省教育厅项目(18ZB0495)


References

[1] Sánchez S, Soler L, Katuri J. Angew Chem Int Ed, 2015, 54: 1414-1444 CrossRef PubMed Google Scholar

[2] Wang H, Pumera M. Chem Rev, 2015, 115: 8704-8735 CrossRef PubMed Google Scholar

[3] Wu Z, Lin X, Si T, He Q. Small, 2016, 12: 3080-3093 CrossRef PubMed Google Scholar

[4] Chen C, Karshalev E, Guan J, Wang J. Small, 2018, 14: 1704252 CrossRef PubMed Google Scholar

[5] Soler L, Magdanz V, Fomin VM, Sanchez S, Schmidt OG. ACS Nano, 2013, 7: 9611-9620 CrossRef PubMed Google Scholar

[6] Gao W, Feng X, Pei A, Gu Y, Li J, Wang J. Nanoscale, 2013, 5: 4696-4700 CrossRef PubMed ADS Google Scholar

[7] Li J, Singh VV, Sattayasamitsathit S, Orozco J, Kaufmann K, Dong R, Gao W, Jurado-Sanchez B, Fedorak Y, Wang J. ACS Nano, 2014, 8: 11118-11125 CrossRef PubMed Google Scholar

[8] Singh VV, Martin A, Kaufmann K, D. S. de Oliveira S, Wang J. Chem Mater, 2015, 27: 8162-8169 CrossRef Google Scholar

[9] Srivastava SK, Guix M, Schmidt OG. Nano Lett, 2016, 16: 817-821 CrossRef PubMed ADS Google Scholar

[10] Delezuk JAM, Ramírez-Herrera DE, Esteban-Fernández de Ávila B, Wang J. Nanoscale, 2017, 9: 2195-2200 CrossRef PubMed Google Scholar

[11] Chen A, Ge XH, Chen J, Zhang L, Xu JH. Lab Chip, 2017, 17: 4220-4224 CrossRef PubMed Google Scholar

[12] Wang L, Cui H, Zhang J, Zheng X. Sci Sin Chim, 2017, 47: 70-81 CrossRef Google Scholar

[13] Li ZL, Wang W, Li M, Zhang MJ, Tang MJ, Su YY, Liu Z, Ju XJ, Xie R, Chu LY. Ind Eng Chem Res, 2018, 57: 4562-4570 CrossRef Google Scholar

[14] Mou F, Chen C, Zhong Q, Yin Y, Ma H, Guan J. ACS Appl Mater Interfaces, 2014, 6: 9897-9903 CrossRef PubMed Google Scholar

[15] Gao W, Dong R, Thamphiwatana S, Li J, Gao W, Zhang L, Wang J. ACS Nano, 2015, 9: 117-123 CrossRef PubMed Google Scholar

[16] Wang L, Liu Y, He J, Hourwitz MJ, Yang Y, Fourkas JT, Han X, Nie Z. Small, 2015, 11: 3762-3767 CrossRef PubMed Google Scholar

[17] Li J, Thamphiwatana S, Liu W, Esteban-Fernández de Ávila B, Angsantikul P, Sandraz E, Wang J, Xu T, Soto F, Ramez V, Wang X, Gao W, Zhang L, Wang J. ACS Nano, 2016, 10: 9536-9542 CrossRef Google Scholar

[18] Lin X, Wu Z, Si T, He Q. Sci Sin Chim, 2017, 47: 3-13 CrossRef Google Scholar

[19] Liu C, Huang J, Song Y, Xu T, Zhang X. Sci Sin Chim, 2017, 47: 29-38 CrossRef Google Scholar

[20] Tu Y, Peng F, André AAM, Men Y, Srinivas M, Wilson DA. ACS Nano, 2017, 11: 1957-1963 CrossRef Google Scholar

[21] Medina-Sánchez M, Schmidt OG. Nature, 2017, 545: 406-408 CrossRef PubMed ADS Google Scholar

[22] Li J, Angsantikul P, Liu W, Esteban-Fernández de Ávila B, Thamphiwatana S, Xu M, Sandraz E, Wang X, Delezuk J, Gao W, Zhang L, Wang J. Angew Chem Int Ed, 2017, 56: 2156-2161 CrossRef PubMed Google Scholar

[23] de Ávila BEF, Angsantikul P, Li J, Angel Lopez-Ramirez M, Ramírez-Herrera DE, Thamphiwatana S, Chen C, Delezuk J, Samakapiruk R, Ramez V, Obonyo M, Zhang L, Wang J. Nat Commun, 2017, 8: 272 CrossRef PubMed ADS Google Scholar

[24] Luo M, Feng Y, Wang T, Guan J. Adv Funct Mater, 2018, 28: 1706100 CrossRef Google Scholar

[25] Orozco J, García-Gradilla V, D'Agostino M, Gao W, Cortés A, Wang J. ACS Nano, 2013, 7: 818-824 CrossRef PubMed Google Scholar

[26] Rojas D, Jurado-Sánchez B, Escarpa A. Anal Chem, 2016, 88: 4153-4160 CrossRef PubMed Google Scholar

[27] Molinero-Fernández Á, Moreno-Guzmán M, López MÁ, Escarpa A. Anal Chem, 2017, 89: 10850-10857 CrossRef PubMed Google Scholar

[28] Sanchez S, Solovev AA, Schulze S, Schmidt OG. Chem Commun, 2011, 47: 698-700 CrossRef PubMed Google Scholar

[29] Orozco J, Campuzano S, Kagan D, Zhou M, Gao W, Wang J. Anal Chem, 2011, 83: 7962-7969 CrossRef PubMed Google Scholar

[30] Campuzano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen JC, Merkoçi A, Wang J. Nano Lett, 2012, 12: 396-401 CrossRef PubMed ADS Google Scholar

[31] Xuan M, Lin X, Shao J, Dai L, He Q. ChemPhysChem, 2015, 16: 259 CrossRef Google Scholar

[32] García M, Orozco J, Guix M, Gao W, Sattayasamitsathit S, Escarpa A, Merkoçi A, Wang J. Nanoscale, 2013, 5: 1325-1331 CrossRef PubMed ADS Google Scholar

[33] Orozco J, Cheng G, Vilela D, Sattayasamitsathit S, Vazquez-Duhalt R, Valdés-Ramírez G, Pak OS, Escarpa A, Kan C, Wang J. Angew Chem Int Ed, 2013, 52: 13276-13279 CrossRef PubMed Google Scholar

[34] Ismagilov RF, Schwartz A, Bowden N, Whitesides GM. Angew Chem Int Ed, 2002, 41: 652-654 CrossRef Google Scholar

[35] Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK, Cao Y, Mallouk TE, Lammert PE, Crespi VH. J Am Chem Soc, 2004, 126: 13424-13431 CrossRef PubMed Google Scholar

[36] Gao W, Pei A, Wang J. ACS Nano, 2012, 6: 8432-8438 CrossRef PubMed Google Scholar

[37] Gao W, Pei A, Dong R, Wang J. J Am Chem Soc, 2014, 136: 2276-2279 CrossRef PubMed Google Scholar

[38] Wu Y, Si T, Lin X, He Q. Chem Commun, 2015, 51: 511-514 CrossRef PubMed Google Scholar

[39] Jurado-Sánchez B, Sattayasamitsathit S, Gao W, Santos L, Fedorak Y, Singh VV, Orozco J, Galarnyk M, Wang J. Small, 2015, 11: 499-506 CrossRef PubMed Google Scholar

[40] Wilson DA, Nolte RJM, van Hest JCM. Nat Chem, 2012, 4: 268-274 CrossRef PubMed ADS Google Scholar

[41] Peng F, Tu Y, van Hest JCM, Wilson DA. Angew Chem Int Ed, 2015, 54: 11662-11665 CrossRef PubMed Google Scholar

[42] Abdelmohsen LKEA, Nijemeisland M, Pawar GM, Janssen GJA, Nolte RJM, van Hest JCM, Wilson DA. ACS Nano, 2016, 10: 2652-2660 CrossRef Google Scholar

[43] Tu Y, Peng F, White PB, Wilson DA. Angew Chem Int Ed, 2017, 56: 7620-7624 CrossRef PubMed Google Scholar

[44] Tu Y, Peng F, Sui X, Men Y, White PB, van Hest JCM, Wilson DA. Nat Chem, 2017, 9: 480-486 CrossRef PubMed ADS Google Scholar

[45] Gao W, Uygun A, Wang J. J Am Chem Soc, 2012, 134: 897-900 CrossRef PubMed Google Scholar

[46] Xu T, Soto F, Gao W, Garcia-Gradilla V, Li J, Zhang X, Wang J. J Am Chem Soc, 2014, 136: 8552-8555 CrossRef PubMed Google Scholar

[47] Li Y, Wu J, Xie Y, Ju H. Chem Commun, 2015, 51: 6325-6328 CrossRef PubMed Google Scholar

[48] Solovev AA, Mei Y, Bermúdez Ureña E, Huang G, Schmidt OG. Small, 2009, 5: 1688-1692 CrossRef PubMed Google Scholar

[49] Solovev AA, Smith EJ, Bof’Bufon CC, Sanchez S, Schmidt OG. Angew Chem, 2011, 123: 11067-11070 CrossRef Google Scholar

[50] Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C, Sanchez S, Schmidt OG. ACS Nano, 2012, 6: 1751-1756 CrossRef PubMed Google Scholar

[51] Magdanz V, Stoychev G, Ionov L, Sanchez S, Schmidt OG. Angew Chem Int Ed, 2014, 53: 2673-2677 CrossRef PubMed Google Scholar

[52] Zhang P, Huang G, Men C, Mei Y. (in Chinsese) [张培赟, 黄高山, 门传玲, 梅永丰. 中国科学: 化学, 2017, 47: 14–28]. Sci Sin Chim, 2017, 47: 14-28 CrossRef Google Scholar

[53] Zha F, Wang T, Luo M, Guan J. Micromachines, 2018, 9: 78 CrossRef PubMed Google Scholar

[54] Chang XC, Li TL, Zhou DK, Zhang GY, Li LQ. Chin Sci Bull, 2017, 62: 122-135 CrossRef Google Scholar

[55] Zheng X, Cui HH, Li ZH. Chin Sci Bull, 2017, 62: 167-185 CrossRef Google Scholar

[56] Lin Z, Wu Z, Lin X, He Q. Chem Eur J, 2016, 22: 1587-1591 CrossRef PubMed Google Scholar

[57] Ge Y, Liu M, Liu L, Sun Y, Zhang H, Dong B. Nano-Micro Lett, 2016, 8: 157-164 CrossRef Google Scholar

[58] Li N, Zhao L, Qi L, Li Z, Luan Y. Prog Polym Sci, 2016, 58: 1-26 CrossRef Google Scholar

[59] Martino C, Kim SH, Horsfall L, Abbaspourrad A, Rosser SJ, Cooper J, Weitz DA. Angew Chem, 2012, 124: 6522-6526 CrossRef Google Scholar

[60] Atencia J, Beebe DJ. Nature, 2005, 437: 648-655 CrossRef PubMed ADS Google Scholar

[61] Wang W, Xie R, Ju XJ, Luo T, Liu L, Weitz DA, Chu LY. Lab Chip, 2011, 11: 1587-1592 CrossRef PubMed Google Scholar

[62] Chu LY, Utada AS, Shah RK, Kim JW, Weitz DA. Angew Chem Int Ed, 2010, 46: 8970-8974 CrossRef PubMed Google Scholar

[63] Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu LY, Kim JW, Fernandez-Nieves A, Martinez CJ, Weitz DA. Mater Today, 2008, 11: 18-27 CrossRef Google Scholar

[64] Wang W, Zhang MJ, Chu LY. Acc Chem Res, 2014, 47: 373-384 CrossRef PubMed Google Scholar

[65] Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi CH, Xu J, Zhang A, Lee H, Weitz DA. Chem Soc Rev, 2018, 47: 5646-5683 CrossRef PubMed Google Scholar

[66] Shang L, Cheng Y, Zhao Y. Chem Rev, 2017, 117: 7964-8040 CrossRef PubMed Google Scholar

[67] Seo KD, Kwak BK, Sanchez S, Kim DS. IEEE Transon Nanobiosci, 2015, 14: 298-304 CrossRef PubMed Google Scholar

[68] Lu AX, Liu Y, Oh H, Gargava A, Kendall E, Nie Z, DeVoe DL, Raghavan SR. ACS Appl Mater Interfaces, 2016, 8: 15676-15683 CrossRef Google Scholar

[69] Li M, Wang W, Zhang Z, He F, Yan S, Yan PJ, Xie R, Ju XJ, Liu Z, Chu LY. Ind Eng Chem Res, 2017, 56: 3297-3308 CrossRef Google Scholar

[70] Zhang MJ, Wang W, Yang XL, Ma B, Liu YM, Xie R, Ju XJ, Liu Z, Chu LY. ACS Appl Mater Interfaces, 2015, 7: 13758-13767 CrossRef Google Scholar

[71] Wei J, Ju XJ, Zou XY, Xie R, Wang W, Liu YM, Chu LY. Adv Funct Mater, 2014, 24: 3312-3323 CrossRef Google Scholar

[72] Wang W, Zhang MJ, Xie R, Ju XJ, Yang C, Mou CL, Weitz DA, Chu LY. Angew Chem, 2013, 125: 8043 CrossRef Google Scholar

[73] Wang W, He XH, Zhang MJ, Tang MJ, Xie R, Ju XJ, Liu Z, Chu LY. Macromol Rapid Commun, 2017, 38: 1700429 CrossRef PubMed Google Scholar

[74] Mou CL, Wang W, Li ZL, Ju XJ, Xie R, Deng NN, Wei J, Liu Z, Chu LY. Adv Sci, 2018, 5: 1700960 CrossRef PubMed Google Scholar

[75] Tang MJ, Wang W, Li ZL, Liu ZM, Guo ZY, Tian HY, Liu Z, Ju XJ, Xie R, Chu LY. Ind Eng Chem Res, 2018, 57: 9430-9438 CrossRef Google Scholar

[76] Su Y, Ge Y, Liu L, Zhang L, Liu M, Sun Y, Zhang H, Dong B. ACS Appl Mater Interfaces, 2016, 8: 4250-4257 CrossRef Google Scholar

[77] Yang F, Mou F, Jiang Y, Luo M, Xu L, Ma H, Guan J. ACS Nano, 2018, 12: 6668-6676 CrossRef Google Scholar

[78] Uygun M, Singh VV, Kaufmann K, Uygun DA, de Oliveira SDS, Wang J. Angew Chem Int Ed, 2015, 54: 12900-12904 CrossRef PubMed Google Scholar

[79] Hu N, Sun M, Lin X, Gao C, Zhang B, Zheng C, Xie H, He Q. Adv Funct Mater, 2018, 28: 1705684 CrossRef Google Scholar

[80] Mou F, Kong L, Chen C, Chen Z, Xu L, Guan J. Nanoscale, 2016, 8: 4976-4983 CrossRef PubMed ADS Google Scholar

[81] Gao C, Lin Z, Lin X, He Q. Adv Therap, 2018, 1: 1800056 CrossRef Google Scholar

[82] Chen C, Karshalev E, Li J, Soto F, Castillo R, Campos I, Mou F, Guan J, Wang J. ACS Nano, 2016, 10: 10389-10396 CrossRef Google Scholar

  • Figure 1

    Particulate micromotors with a Pt shell and with an Al-Ga core. (a, b) Illustration showing the fabrication of SiO2/PEM/Pt micromotors for bubble-propelled motion, and their SEM images [38]; (c) EDX image of a C/Pt micromotor [39]; (d) SEM (d1) and EDX (d2,d3) images of Pt/PEM bowl-shaped micromotor [56]; (e, f) Illustration and optical image showing the bubble-propelled motion of an Al-Ga/Ti micromotor in water [36] (color online).

  • Figure 2

    Particulate micromotors with a Mg core. (a) Illustration (a1), SEM (a2) and EDX (a3, a4) of Mg/Ag micromotior [57]. (b) Illustration showing bubble-propelled motion of Mg/Ti/Ni/Au micromotors in seawater [6]. (c) Mg/Ti/Ni/Au micromotors with alkanethiol-modified Au shell for adsorbing oil pollutants in water [6]. (d) Mg/Au/PLGA/Alg/Chi micromotors and their bubble-propelled motion in water [10] (color online).

  • Figure 3

    Mg-core-containing particulate micromotors for degradation and detection of toxic substances. Mg/Au/TiO2 micromotors (a, b) for destruction of Bacillus globigii spores under UV light (c) [7]; Mg/Au micromotors (d, e) for detection of diphenyl phthalate (DPP) (f) [26] (color online).

  • Figure 4

    Mg-core-containing particulate micromotors for drug delivery and controlled release. Illustration showing the (a) fabrication and (b) structure of drug-loading Mg/TiO2/PLGA/Chi micromotors [23]; (c) Mg/Pt/polymer micromotors for pH-responsive drug release [22]; (d) Mg/Pt/PNIPAM micromotors for thermo-responsive drug release [14] (color online).

  • Figure 5

    Pt-NPs-containing PEG-b-PS polymersome micromotors. Illustration showing the (a) fabrication of the micromotors and (b) their TEM image. (c) Illustration showing the bubble-propelled motion of the micromotors [40] (color online).

  • Figure 6

    PEG-b-PS polymersome micromotors for thermo-responsive regulation of motion velocity. (a) Illustration showing the micromotors for thermo-responsive regulation of motion velocity. (b) Effect of thermo-responsive swelling/shrinking of PNIPAM polymers at the opening pore of polymersome on the H2O2 diffusion into the cavity. Thermo-responsive control of the (c) “on-off” and (d) velocity of bubble-propelled motion [44] (color online).

  • Figure 7

    Fe3O4-NPs-containing mesoporous SiO2/Ag particulate micromotors. Illustration showing (a) the fabrication of SiO2/Ag micromotors based on microfluidic emulsion template-synthesis [69], and (b) excellent adhesion and reduction properties of polydopamine [13]. SEM images of magnetic mesoporous SiO2 microparticles, with semipsphere coated by polydopamine, (c) before and (d) after Ag reduction, and (e) the magnified SEM image showing the Ag NPs on the microparticle surface [13] (color online).

  • Figure 8

    Fe@Pt-NPs-containing chitosan particulate micromotors. (a) W/O emulsion droplets containing Fe@Pt NPs at the bottom, and (b) the resultant chitosan micromotors. (c, d) Chitosan micromotors for cargo capture and release under magnetic guide [68] (color online).

  • Figure 9

    Magnetic, polymeric particulate micromotors with Ag NPs and TiO2 NPs decorated on the surface. (a) Illustration showing the fabrication of the magnetic, polymeric micromotors from microfluidic emulsion tempates. Magnetic, polymeric micromotors with trunked-sphere shape (b) and bowl shape (c). (e) Optical image of a Fe3O4-NPs-containing micromotor, and SEM images of (d) Ag NPs and (f) TiO2 NPs on its surface [11] (color online).

  • Figure 10

    Tubular micromotots with an inner Pt layer. (a) Illustraion showing the fabrication of PtNP@CNT-PPy/PEDOT micromotors with membrane pores as templates, and (b) the SEM image of the micromotors [47]. (c) PtNP/gelatin micromotor (c1) and pH-sensitive size change of its opening pore (c2–c4) [76]. (d) Ultrasonic “on-off” control of bubble-propelled motion of Pt/Ni/PEDOT micromotors [46]. (e) Control of bubble-propelled motion of Pt/PPy micromotior based on dynamic arrangement of Fe3O4@PVP NPs in ferrofluid [77] (color online).

  • Figure 11

    Tubular micromotors with an inner Pt layer for pollutant degradation and substance separation. (a) Pt/PEDOT micromotors for degradation of organophosphate nerve agents [33]. (b) Pt/Ni/PEDOT/Anti-IgG micromotors for selective recognition and capture of IgG [32]. (c) Pt/PANI/Ni/Au/ConA micromotors for rapid E.coli separation [30]. (d) Pt/PEDOT/PPy/CA micromotors for efficient CO2 capture [78] (color online).

  • Figure 12

    Tubular micromotors for water-quality testing and targeted drug delivery. (a) Illustration and (c) optical image showing bubble-propelled motion of (b) Zn/PANI micromotors in acidic solution [45]. (d) Localization of Zn/PEDOT micromotors in mouse’s stomach [15]. (e) Catalase/Au/PEDOT micromotors for testing water-quality [25]. (f, g) Mg/Au/PEDOT/enteric-polymer micromotor containing Mg microparticles and drugs for selectively position and drug release in gastrointestinal tract [17] (color online).

  • Figure 13

    Fabrication of tubular micromotors via roll-up of thin film. Illustration showing the fabrication (a) and structure (b) of Pd/Ti/Fe/Cr micromotors; SEM images showing the (c,d) PdNPs on their inner Ti layer and (e) the Pd/Ti/Fe/Cr micromotor [9]; PtNPs/PEM micromotors fabricated by rolling-up of films with (f) square and (g) round shapes [79] (color online).

  • Figure 14

    Tubular micromotors with an inner Pt layer for regulating their bubble-propelled motion. (a) Pt/Au/Fe/Ti micromotors fabricated by roll-up of metal film [48]. Light-sensitive “on-off” control of bubble-propelled mition of (b) Pt/Cr/Ti micromotors and (c) their tracked trajectory [49]. Pt/PCL/PNIPAM micromotor un-rolls at (d) high temperature, and (e) rolls at low temperature [51]. Pt/PCL/PNIPAM micromotors rolls at low temperature for bubble-propelled motion (f) and (g) un-rolls at high temperature for stopping motion [51] (color online).

  • Figure 15

    Tubular micromotors with an inner Pt layer for degrading pollutants and capturing and drilling cells. Pt/Fe/Ti micromotor (a) for cell capture (b) [28]; (c) Pt/Fe micromotor for degradation of organic pollutants in water [5]; Pt/Cr/InGaAs micromotors with (d) flat tip and (e, f) sharp tip [50]; (g) Pt/Cr/InGaAs micromotor with sharp tip for drilling cells [50] (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号