logo

More info
  • ReceivedSep 20, 2018
  • AcceptedOct 17, 2018
  • PublishedJan 18, 2019

Abstract

As an emerging discipline in the intersection of chemistry and physics, on-surface chemistry has been at the forefront of surface science since its inception. On-surface chemistry has obvious differences from classical solution chemistry although they are closely related. Many reactions in solution become applicable in on-surface reactions under ultra-high vacuum conditions without the involvement of solvents. Furthermore, with the aid of surface confinement effects, a series of highly accurate, highly selective chemical reactions that are difficult to achieve in traditional solution reactions can be accomplished, which shows attractive potential for functional macromolecule design, synthetic chemistry, and new material fabrication. In this review, we present some representative on-surface reactions. By comparing the differences in reaction paths and products with traditional solution reactions, the characteristics of on-surface chemistry are epitomized. In addtion, we make a brief outlook for the opportunities and challenges of this novel synthetic tool facing in the future.


References

[1] Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S. Nat Nanotech, 2007, 2: 687-691 CrossRef PubMed ADS Google Scholar

[2] Binnig G, Rohrer H, Gerber C, Weibel E. Appl Phys Lett, 1982, 40: 178-180 CrossRef ADS Google Scholar

[3] Binnig G, Quate CF, Gerber C. Phys Rev Lett, 1986, 56: 930-933 CrossRef PubMed ADS Google Scholar

[4] Dong L, Liu PN, Lin N. Acc Chem Res, 2015, 48: 2765-2774 CrossRef PubMed Google Scholar

[5] Simpson CD, Mattersteig G, Martin K, Gherghel L, Bauer RE, Räder HJ, Müllen K. J Am Chem Soc, 2004, 126: 3139-3147 CrossRef PubMed Google Scholar

[6] Treier M, Pignedoli CA, Laino T, Rieger R, Müllen K, Passerone D, Fasel R. Nat Chem, 2011, 3: 61-67 CrossRef PubMed ADS Google Scholar

[7] Cai Z, Liu M, She L, Li X, Lee J, Yao DX, Zhang H, Chi L, Fuchs H, Zhong D. ChemPhysChem, 2015, 16: 1356-1360 CrossRef PubMed Google Scholar

[8] Li Q, Owens JR, Han C, Sumpter BG, Lu W, Bernholc J, Meunier V, Maksymovych P, Fuentes-Cabrera M, Pan M. Sci Rep, 2013, 3: 2102 CrossRef PubMed ADS Google Scholar

[9] Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Müllen K, Fuchs H, Chi L. J Am Chem Soc, 2015, 137: 4022-4025 CrossRef PubMed Google Scholar

[10] Chen Q, Cramer JR, Liu J, Jin X, Liao P, Shao X, Gothelf KV, Wu K. Angew Chem Int Ed, 2017, 56: 5026-5030 CrossRef PubMed Google Scholar

[11] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R. Nature, 2010, 466: 470-473 CrossRef PubMed ADS Google Scholar

[12] Wang H, Zhang H, Chi L. Adv Polym Sci, 2017, 278: 67–98. Google Scholar

[13] Jiang Z, Zhang W, Jin L, Yang X, Xu F, Zhu J, Huang W. J Phys Chem C, 2007, 111: 12434-12439 CrossRef Google Scholar

[14] Du Y, Li L, Wang X, Qiu H. Appl Spectrosc, 2018, 72: 122-128 CrossRef PubMed Google Scholar

[15] Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. Science, 2009, 325: 1110-1114 CrossRef PubMed ADS Google Scholar

[16] Yang T, Chen J, Huang L, Wang T, Xiao C, Sun Z, Dai D, Yang X, Zhang DH. Science, 2015, 347: 60-63 CrossRef PubMed ADS Google Scholar

[17] Liao K, Negretti S, Musaev DG, Bacsa J, Davies HML. Nature, 2016, 533: 230-234 CrossRef PubMed ADS Google Scholar

[18] Liao K, Pickel TC, Boyarskikh V, Bacsa J, Musaev DG, Davies HML. Nature, 2017, 51: 609-613 CrossRef PubMed ADS Google Scholar

[19] Niu K, Lin H, Zhang J, Zhang H, Li Y, Li Q, Chi L. Phys Chem Chem Phys, 2018, 20: 15901-15906 CrossRef PubMed ADS Google Scholar

[20] Nykänen L, Honkala K. ACS Catal, 2013, 3: 3026-3030 CrossRef Google Scholar

[21] Latimer AA, Kulkarni AR, Aljama H, Montoya JH, Yoo JS, Tsai C, Abild-Pedersen F, Studt F, Nørskov JK. Nat Mater, 2017, 16: 225-229 CrossRef PubMed ADS Google Scholar

[22] Wang B, Qiu D, Zhang Y, Wang J. Beilstein J Org Chem, 2016, 12: 796-804 CrossRef PubMed Google Scholar

[23] Shilov AE, Shul’pin GB. Chem Rev, 1997, 97: 2879-2932 CrossRef Google Scholar

[24] He J, Wasa M, Chan KSL, Shao Q, Yu JQ. Chem Rev, 2017, 117: 8754-8786 CrossRef PubMed Google Scholar

[25] Daugulis O, Do HQ, Shabashov D. Acc Chem Res, 2009, 42: 1074-1086 CrossRef PubMed Google Scholar

[26] Lyons TW, Sanford MS. Chem Rev, 2010, 110: 1147-1169 CrossRef PubMed Google Scholar

[27] Baudoin O. Chem Soc Rev, 2011, 40: 4902-4911 CrossRef PubMed Google Scholar

[28] He G, Wang B, Nack WA, Chen G. Acc Chem Res, 2016, 49: 635-645 CrossRef PubMed Google Scholar

[29] Commeyras A, Olah GA. J Am Chem Soc, 1969, 91: 2929-2942 CrossRef Google Scholar

[30] Herlem M. Pure Appl Chem, 1977, 49: 107-113 CrossRef Google Scholar

[31] Olah GA, Schlosberg RH. J Am Chem Soc, 1968, 90: 2726-2727 CrossRef Google Scholar

[32] Shul’pin GB, Lederer P, Geletiy YV. Photoinduced reactions of organic compounds with complexes of transition metals. VIII. Photochemical chlorination of saturated and aromatic hydrocarbons with AuCl4- complex. J Gen Chem USSR, 1987, 57: 543–548. Google Scholar

[33] Shul’pin GB, Nizova GV, Geletiy YV. Photoinduced reactions of organic compounds with complexes of transition metals. IX. Oxidation of hexane and other alkanes and isomerization of 2-hexene under the influence of the PtCl62- ion in CF3COOH. J Gen Chem USSR, 1987, 57: 548–552. Google Scholar

[34] Gesser HD, Hunter NR, Prakash CB. Chem Rev, 1985, 85: 235-244 CrossRef Google Scholar

[35] Sinev MY, Korshak VN, Krylov OV. Russ Chem Rev, 1989, 58: 22-34 CrossRef ADS Google Scholar

[36] Arutyunov VS, Basevich VY, Vedeneev VI. Usp Khim, 1996, 65: 211 CrossRef ADS Google Scholar

[37] Han LB, Tsubota S, Kobayashi T, Haruta M. J Chem Soc Chem Commun, 1995, : 93-94 CrossRef Google Scholar

[38] DesMarteau DD, Donadelli A, Montanari V, Petrov VA, Resnati G. J Am Chem Soc, 1993, 115: 4897-4898 CrossRef Google Scholar

[39] Petrov VA, Montanari V, Resnati G, DesMarteau DD. J Fluor Chem, 1991, 54: 398 CrossRef Google Scholar

[40] DesMarteau DD, Petrov VA, Montanari V, Pregnolato M, Resnati G. Tetrahedron Lett, 1992, 33: 7245-7248 CrossRef Google Scholar

[41] Kats MM, Kozlov YN, Shul’pin GB. Oxidation of benzene and cyclohexane in CH3CN-H2O by means of XeO3 and XeF2. J Gen Chem USSR, 1991, 61: 1694–1696. Google Scholar

[42] Lin M, Sen A. J Chem Soc Chem Commun, 1992, 0: 892-893 CrossRef Google Scholar

[43] Sako M, Hirota K, Maki Y. Chem Pharm Bull, 1990, 38: 2069-2071 CrossRef Google Scholar

[44] Kung HH. Transition Metal Oxides: Surface Chemistry and Catalysis. Amsterdam: Elsevier, 1989. Google Scholar

[45] Kallo ED, Minachev KM. Catalysis on Zeolites. Budapest: Akademia, 1988. Google Scholar

[46] Kharasch MS, Isbell HS. J Am Chem Soc, 1931, 53: 3053-3059 CrossRef Google Scholar

[47] Milas NA, Sussman S. J Am Chem Soc, 1936, 58: 1302-1304 CrossRef Google Scholar

[48] Chatt J, Davidson JM. J Chem Soc, 1965, 0: 843-855 CrossRef Google Scholar

[49] Gol’dshleger NF, Es’kova VV, Shilov AE, Shteinman AA. Reactions of alkanes in solutions of chloride complexes of platinum. Zh Fiz Khim, 1972, 46: 1353–1354. Google Scholar

[50] Tolbert MA, Mandich ML, Halle LF, Beauchamp JL. J Am Chem Soc, 1986, 108: 5675-5683 CrossRef PubMed Google Scholar

[51] Grob RL, McGonigle EJ. J Chromatogr A, 1971, 59: 13-20 CrossRef Google Scholar

[52] Hanratty MA, Beauchamp JL, Illies AJ, Van Koppen P, Bowers MT. J Am Chem Soc, 1988, 110: 1-14 CrossRef Google Scholar

[53] Crabtree RH, Mihelcic JM, Quirk JM. J Am Chem Soc, 1979, 101: 7738-7740 CrossRef Google Scholar

[54] Formenti M, Juillet F, Teichner SJ. Photocatalytic oxidation mechanism of alkanes over titanium dioxide. I. Kinetic study. Chem Inf, 1977, 8: 1031–1036. Google Scholar

[55] Baudry D, Ephritikhine M, Felkin H. J Chem Soc Chem Commun, 1980, 0: 1243-1244 CrossRef Google Scholar

[56] Janowicz AH, Bergman RG. J Am Chem Soc, 1982, 104: 352-354 CrossRef Google Scholar

[57] Hoyano JK, Graham WAG. J Am Chem Soc, 1982, 104: 3723-3725 CrossRef Google Scholar

[58] Fendrick CM, Marks TJ. J Am Chem Soc, 1984, 106: 2214-2216 CrossRef Google Scholar

[59] Eisen MS, Marks TJ. Organometallic molecule-inorganic surface coordination and catalytic chemistry. Facile and selective alkane activation by supported tetraallylthorium. Organometallics, 1992, 11: 3939-3941. Google Scholar

[60] Baudry D, Ephritikhine M, Felkin H, Zakrzewski J. J Chem Soc Chem Commun, 1982, 0: 1235-1236 CrossRef Google Scholar

[61] Baudry D, Ephritikhine M, Felkin H, Holmes-Smith R. J Chem Soc Chem Commun, 1983, 0: 788-789 CrossRef Google Scholar

[62] Baudry D, Ephritikhine M, Felkin H, Zakrzewski J. Tetrahedron Lett, 1984, 25: 1283-1286 CrossRef Google Scholar

[63] Michos D, Luo XL, Faller JW, Crabtree RH. Inorg Chem, 1993, 32: 1370-1375 CrossRef Google Scholar

[64] Shih KC, Goldman AS. Organometallics, 1993, 12: 3390-3392 CrossRef Google Scholar

[65] Xu B, Zhou L, Madix R, Friend C . Angew Chem, 2010, 122: 404-408 CrossRef Google Scholar

[66] Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M. Science, 2010, 327: 319-322 CrossRef PubMed ADS Google Scholar

[67] Angelici RJ. J Organomet Chem, 2008, 693: 847-856 CrossRef Google Scholar

[68] Zhong D, Franke JH, Podiyanachari SK, Blömker T, Zhang H, Kehr G, Erker G, Fuchs H, Chi L. Science, 2011, 334: 213-216 CrossRef PubMed ADS Google Scholar

[69] Sun K, Chen A, Liu M, Zhang H, Duan R, Ji P, Li L, Li Q, Li C, Zhong D, Müllen K, Chi L. J Am Chem Soc, 2018, 140: 4820-4825 CrossRef PubMed Google Scholar

[70] Zhang J, Chang CR, Yang B, Cao N, Peng C, Zhang H, Tang DTD, Glorius F, Erker G, Fuchs H, Li Q, Chi L. Chem Eur J, 2017, 23: 6185-6189 CrossRef PubMed Google Scholar

[71] Wilson ASS, Hill MS, Mahon MF, Dinoi C, Maron L. Science, 2017, 358: 1168-1171 CrossRef PubMed ADS Google Scholar

[72] Li Q, Yang B, Lin H, Aghdassi N, Miao K, Zhang J, Zhang H, Li Y, Duhm S, Fan J, Chi L. J Am Chem Soc, 2016, 138: 2809-2814 CrossRef PubMed Google Scholar

[73] Li Q, Yang B, Björk J, Zhong Q, Ju H, Zhang J, Cao N, Shi Z, Zhang H, Ebeling D, Schirmeisen A, Zhu J, Chi L. J Am Chem Soc, 2018, 140: 6076-6082 CrossRef PubMed Google Scholar

[74] Sun Q, Zhang C, Kong H, Tan Q, Xu W. Chem Commun, 2014, 50: 11825-11828 CrossRef PubMed Google Scholar

[75] Cui P, Zhang Q, Zhu H, Li X, Wang W, Li Q, Zeng C, Zhang Z. Phys Rev Lett, 2016, 116: 026802 CrossRef PubMed ADS Google Scholar

[76] Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache MV, Paradinas M, Panighel M, Ceballos G, Valenzuela SO, Peña D, Mugarza A. Science, 2018, 360: 199-203 CrossRef PubMed ADS arXiv Google Scholar

[77] Sun Q, Cai L, Ding Y, Xie L, Zhang C, Tan Q, Xu W. Angew Chem Int Ed, 2015, 54: 4549-4552 CrossRef PubMed Google Scholar

[78] Sun Q, Tran BV, Cai L, Ma H, Yu X, Yuan C, Stöhr M, Xu W. Angew Chem Int Ed, 2017, 56: 12165-12169 CrossRef PubMed Google Scholar

[79] Shi KJ, Shu CH, Wang CX, Wu XY, Tian H, Liu PN. Org Lett, 2017, 19: 2801-2804 CrossRef PubMed Google Scholar

[80] Aragonès AC, Haworth NL, Darwish N, Ciampi S, Bloomfield NJ, Wallace GG, Diez-Perez I, Coote ML. Nature, 2016, 531: 88-91 CrossRef PubMed ADS Google Scholar

[81] Glaser C. Ber Dtsch Chem Ges, 1869, 2: 422. Google Scholar

[82] Glaser C. Ann Chem Pharm, 1870, 154: 137. Google Scholar

[83] Hay AS. J Org Chem, 1962, 27: 3320-3321 CrossRef Google Scholar

[84] Bohlmann F, Schönowsky H, Inhoffen E, Grau G. Polyacetylenverbindungen, LII. Über den mechanismus der oxydativen dimerisierung von acetylenverbindungen. Chem Ber, 1964, 97: 794-800. Google Scholar

[85] Riss A, Paz AP, Wickenburg S, Tsai HZ, De Oteyza DG, Bradley AJ, Ugeda MM, Gorman P, Jung HS, Crommie MF, Rubio A, Fischer FR. Nat Chem, 2016, 8: 678-683 CrossRef PubMed ADS Google Scholar

[86] Siemsen P, Livingston RC, Diederich F. Angew Chem Int Ed, 2000, 39: 2632-2657 CrossRef Google Scholar

[87] Björk J, Zhang YQ, Klappenberger F, Barth JV, Stafström S. J Phys Chem C, 2014, 118: 3181-3187 CrossRef Google Scholar

[88] Kanuru VK, Kyriakou G, Beaumont SK, Papageorgiou AC, Watson DJ, Lambert RM. J Am Chem Soc, 2010, 132: 8081-8086 CrossRef PubMed Google Scholar

[89] Zhang YQ, Kepčija N, Kleinschrodt M, Diller K, Fischer S, Papageorgiou AC, Allegretti F, Björk J, Klyatskaya S, Klappenberger F, Ruben M, Barth JV. Nat Commun, 2012, 3: 1286 CrossRef PubMed ADS Google Scholar

[90] Gao HY, Wagner H, Zhong D, Franke JH, Studer A, Fuchs H. Angew Chem Int Ed, 2013, 52: 4024-4028 CrossRef PubMed Google Scholar

[91] Gao HY, Franke JH, Wagner H, Zhong D, Held PA, Studer A, Fuchs H. J Phys Chem C, 2013, 117: 18595-18602 CrossRef Google Scholar

[92] Liu J, Ruffieux P, Feng X, Müllen K, Fasel R. Chem Commun, 2014, 50: 11200-11203 CrossRef PubMed Google Scholar

[93] Zhou H, Liu J, Du S, Zhang L, Li G, Zhang Y, Tang BZ, Gao HJ. J Am Chem Soc, 2014, 136: 5567-5570 CrossRef PubMed Google Scholar

[94] Gao HY, Zhong D, Mönig H, Wagner H, Held PA, Timmer A, Studer A, Fuchs H. J Phys Chem C, 2014, 118: 6272-6277 CrossRef Google Scholar

[95] Li Q, Gao J, Li Y, Fuentes-Cabrera M, Liu M, Qiu X, Lin H, Chi L, Pan M. Nat Commun, 2018, 9: 3113 CrossRef PubMed ADS Google Scholar

[96] Liu J, Chen Q, Xiao L, Shang J, Zhou X, Zhang Y, Wang Y, Shao X, Li J, Chen W, Xu GQ, Tang H, Zhao D, Wu K. ACS Nano, 2015, 9: 6305-6314 CrossRef Google Scholar

[97] Klappenberger F, Hellwig R, Du P, Paintner T, Uphoff M, Zhang L, Lin T, Moghanaki BA, Paszkiewicz M, Vobornik I, Fujii J, Fuhr O, Zhang YQ, Allegretti F, Ruben M, Barth JV. Small, 2018, 14: 1704321 CrossRef PubMed Google Scholar

[98] Sun Q, Cai L, Ma H, Yuan C, Xu W. ACS Nano, 2016, 10: 7023-7030 CrossRef Google Scholar

[99] Hellwig R, Uphoff M, Paintner T, Björk J, Ruben M, Klappenberger F, Barth JV. Chem Eur J, 2018, 24: 16126-16135 CrossRef PubMed Google Scholar

[100] Jones RR, Bergman RG. J Am Chem Soc, 1972, 94: 660-661 CrossRef Google Scholar

[101] Smith AL, Nicolaou KC. J Med Chem, 1996, 39: 2103-2117 CrossRef PubMed Google Scholar

[102] Konishi M, Ohkuma H, Tsuno T, Oki T, VanDuyne GD, Clardy J. J Am Chem Soc, 1990, 112: 3715-3716 CrossRef Google Scholar

[103] Leet JE, Schroeder DR, Langley DR, Colson KL, Huang S, Klohr SE, Lee MS, Golik J, Hofstead SJ. J Am Chem Soc, 1993, 115: 8432-8443 CrossRef Google Scholar

[104] Biggins JB, Onwueme KC, Thorson JS. Science, 2003, 301: 1537-1541 CrossRef PubMed ADS Google Scholar

[105] Nicolaou KC, Chen JS, Zhang H, Montero A. Angew Chem Int Ed, 2008, 47: 185-189 CrossRef PubMed Google Scholar

[106] Poloukhtine A, Popik VV. J Am Chem Soc, 2007, 129: 12062-12063 CrossRef PubMed Google Scholar

[107] Kar M, Basak A. Chem Rev, 2007, 107: 2861-2890 CrossRef PubMed Google Scholar

[108] John JA, Tour JM. J Am Chem Soc, 1994, 116: 5011-5012 CrossRef Google Scholar

[109] Bergman RG. Acc Chem Res, 1973, 6: 25-31 CrossRef Google Scholar

[110] Xiao Y, Hu A. Macromol Rapid Commun, 2011, 32: 1688-1698 CrossRef PubMed Google Scholar

[111] Smith DW, Babb DA, Snelgrove RV, Townsend PH, Martin SJ. J Am Chem Soc, 1998, 120: 9078-9079 CrossRef Google Scholar

[112] Rule JD, Wilson SR, Moore JS. J Am Chem Soc, 2003, 125: 12992-12993 CrossRef PubMed Google Scholar

[113] Li Z, Song D, Zhi J, Hu A. J Phys Chem C, 2011, 115: 15829-15833 CrossRef Google Scholar

[114] Sun Q, Zhang C, Li Z, Kong H, Tan Q, Hu A, Xu W. J Am Chem Soc, 2013, 135: 8448-8451 CrossRef PubMed Google Scholar

[115] Huisgen R. Angew Chem, 1963, 75: 604-637 CrossRef Google Scholar

[116] Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew Chem Int Ed, 2002, 41: 2596-2599 CrossRef Google Scholar

[117] Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV. J Am Chem Soc, 2008, 130: 8923-8930 CrossRef PubMed Google Scholar

[118] Bebensee F, Bombis C, Vadapoo SR, Cramer JR, Besenbacher F, Gothelf KV, Linderoth TR. 2013, 135: 2136-2139 CrossRef PubMed Google Scholar

[119] Arado OD, Mönig H, Wagner H, Franke JH, Langewisch G, Held PA, Studer A, Fuchs H. ACS Nano, 2013, 7: 8509-8515 CrossRef PubMed Google Scholar

[120] Cordes EH, Jencks WP. J Am Chem Soc, 1962, 84: 832-837 CrossRef Google Scholar

[121] Ding SY, Gao J, Wang Q, Zhang Y, Song WG, Su CY, Wang W. J Am Chem Soc, 2011, 133: 19816-19822 CrossRef PubMed Google Scholar

[122] Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O’Keeffe M, Yaghi OM. J Am Chem Soc, 2009, 131: 4570-4571 CrossRef PubMed Google Scholar

[123] Tozawa T, Jones JTA, Swamy SI, Jiang S, Adams DJ, Shakespeare S, Clowes R, Bradshaw D, Hasell T, Chong SY, Tang C, Thompson S, Parker J, Trewin A, Bacsa J, Slawin AMZ, Steiner A, Cooper AI. Nat Mater, 2009, 8: 973-978 CrossRef PubMed ADS Google Scholar

[124] Weigelt S, Busse C, Bombis C, Knudsen MM, Gothelf KV, Strunskus T, Wöll C, Dahlbom M, Hammer B, Lægsgaard E, Besenbacher F, Linderoth TR. Angew Chem Int Ed, 2007, 46: 9227-9230 CrossRef PubMed Google Scholar

[125] Weigelt S, Busse C, Bombis C, Knudsen MM, Gothelf KV, Lægsgaard E, Besenbacher F, Linderoth TR. Angew Chem Int Ed, 2008, 47: 4406-4410 CrossRef PubMed Google Scholar

[126] Gong Z, Yang B, Lin H, Tang Y, Tang Z, Zhang J, Zhang H, Li Y, Xie Y, Li Q, Chi L. ACS Nano, 2016, 10: 4228-4235 CrossRef Google Scholar

[127] Jiang L, Papageorgiou AC, Oh SC, Sağlam Ö, Reichert J, Duncan DA, Zhang YQ, Klappenberger F, Guo Y, Allegretti F, More S, Bhosale R, Mateo-Alonso A, Barth JV. ACS Nano, 2016, 10: 1033-1041 CrossRef Google Scholar

[128] Tanoue R, Higuchi R, Enoki N, Miyasato Y, Uemura S, Kimizuka N, Stieg AZ, Gimzewski JK, Kunitake M. ACS Nano, 2011, 5: 3923-3929 CrossRef PubMed Google Scholar

[129] Xu L, Zhou X, Yu Y, Tian WQ, Ma J, Lei S. ACS Nano, 2013, 7: 8066-8073 CrossRef PubMed Google Scholar

[130] Liu XH, Guan CZ, Ding SY, Wang W, Yan HJ, Wang D, Wan LJ. J Am Chem Soc, 2013, 135: 10470-10474 CrossRef PubMed Google Scholar

[131] Treier M, Richardson NV, Fasel R. J Am Chem Soc, 2008, 130: 14054-14055 CrossRef PubMed Google Scholar

[132] Fischer EO, Maasböl A. Angew Chem Int Ed Engl, 1964, 3: 580-581 CrossRef Google Scholar

[133] Wanzlick HW. Angew Chem Int Ed, 1962, 1: 75-80 CrossRef Google Scholar

[134] Matena M, Riehm T, Stöhr M, Jung TA, Gade LH. Angew Chem Int Ed, 2008, 47: 2414-2417 CrossRef PubMed Google Scholar

[135] Wanzlick HW. Angew Chem, 1962, 74: 129-134 CrossRef Google Scholar

[136] Held PA, Fuchs H, Studer A. Chem Eur J, 2017, 23: 5874-5892 CrossRef PubMed Google Scholar

[137] Rose M, Klein N, Senkovska I, Schrage C, Wollmann P, Böhlmann W, Böhringer B, Fichtner S, Kaskel S. J Mater Chem, 2011, 21: 711-716 CrossRef Google Scholar

[138] Yang B, Björk J, Lin H, Zhang X, Zhang H, Li Y, Fan J, Li Q, Chi L. J Am Chem Soc, 2015, 137: 4904-4907 CrossRef PubMed Google Scholar

[139] Krüger J, Pavliček N, Alonso JM, Pérez D, Guitián E, Lehmann T, Cuniberti G, Gourdon A, Meyer G, Gross L, Moresco F, Peña D. ACS Nano, 2016, 10: 4538-4542 CrossRef Google Scholar

[140] Yang B, Lin H, Miao K, Zhu P, Liang L, Sun K, Zhang H, Fan J, Meunier V, Li Y, Li Q, Chi L. Angew Chem Int Ed, 2016, 55: 9881-9885 CrossRef PubMed Google Scholar

[141] Ullmann F, Bielecki J. Ber Dtsch Chem Ges, 1901, 34: 2174-2185 CrossRef Google Scholar

[142] Ullmann F. Ber Dtsch Chem Ges, 1903, 36: 2382-2384 CrossRef Google Scholar

[143] Ullmann F, Zlokasoff M. Ber Dtsch Chem Ges, 1905, 38: 2111-2119 CrossRef Google Scholar

[144] Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem Soc Rev, 2014, 43: 3525-3550 CrossRef PubMed Google Scholar

[145] Bunnett JF, Kim JK. J Am Chem Soc, 1970, 92: 7463-7464 CrossRef Google Scholar

[146] Jenkins CL, Kochi JK. J Am Chem Soc, 1972, 94: 856-865 CrossRef Google Scholar

[147] Aalten HL, van Koten G, Grove DM, Kuilman T, Piekstra OG, Hulshof LA, Sheldon RA. Tetrahedron, 1989, 45: 5565-5578 CrossRef Google Scholar

[148] Fanta PE. Chem Rev, 1946, 38: 139-196 CrossRef Google Scholar

[149] Rapson WS, Shuttleworth RG. Nature, 1941, 147: 675 CrossRef ADS Google Scholar

[150] Paine AJ. J Am Chem Soc, 1987, 109: 1496-1502 CrossRef Google Scholar

[151] Bacon RGR, Hill HAO. Q Rev Chem Soc, 1965, 19: 95-125 CrossRef Google Scholar

[152] Fanta PE. Chem Rev, 1964, 64: 613-632 CrossRef Google Scholar

[153] Xi M, Bent BE. Surf Sci, 1992, 278: 19-32 CrossRef ADS Google Scholar

[154] Xi M, Bent BE. J Am Chem Soc, 1993, 115: 7426-7433 CrossRef Google Scholar

[155] Cabibil H, Ihm H, White JM. Surf Sci, 2000, 447: 91-104 CrossRef ADS Google Scholar

[156] Lackinger M, Heckl WM. J Phys D-Appl Phys, 2011, 44: 464011 CrossRef ADS Google Scholar

[157] Lipton-Duffin JA, Ivasenko O, Perepichka DF, Rosei F. Small, 2009, 5: 592-597 CrossRef PubMed Google Scholar

[158] Wang W, Shi X, Wang S, Van Hove MA, Lin N. J Am Chem Soc, 2011, 133: 13264-13267 CrossRef PubMed Google Scholar

[159] Gutzler R, Walch H, Eder G, Kloft S, Heckl WM, Lackinger M. Chem Commun, 2009, 0: 4456-4458 CrossRef PubMed Google Scholar

[160] Bieri M, Nguyen MT, Gröning O, Cai J, Treier M, Aït-Mansour K, Ruffieux P, Pignedoli CA, Passerone D, Kastler M, Müllen K, Fasel R. J Am Chem Soc, 2010, 132: 16669-16676 CrossRef PubMed Google Scholar

[161] Hla SW, Bartels L, Meyer G, Rieder KH. Phys Rev Lett, 2000, 85: 2777-2780 CrossRef PubMed ADS Google Scholar

[162] Di Giovannantonio M, El Garah M, Lipton-Duffin J, Meunier V, Cardenas L, Fagot Revurat Y, Cossaro A, Verdini A, Perepichka DF, Rosei F, Contini G. ACS Nano, 2013, 7: 8190-8198 CrossRef PubMed Google Scholar

[163] Lahrood AR, Björk J, Heckl WM, Lackinger M. Chem Commun, 2015, 51: 13301-13304 CrossRef PubMed Google Scholar

[164] Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R. Nature, 2016, 531: 489-492 CrossRef PubMed ADS arXiv Google Scholar

[165] Chen YC, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF. ACS Nano, 2013, 7: 6123-6128 CrossRef PubMed Google Scholar

[166] Basagni A, Sedona F, Pignedoli CA, Cattelan M, Nicolas L, Casarin M, Sambi M. J Am Chem Soc, 2015, 137: 1802-1808 CrossRef PubMed Google Scholar

[167] Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett, 1975, 16: 4467-4470 CrossRef Google Scholar

[168] Dieck HA, Heck FR. J Organomet Chem, 1975, 93: 259-263 Google Scholar

[169] Cassar L. J Organomet Chem, 93: 253-257 Google Scholar

[170] Chinchilla R, Nájera C. Chem Soc Rev, 2011, 40: 5084-5121 CrossRef PubMed Google Scholar

[171] Sánchez-Sánchez C, Yubero F, González-Elipe AR, Feria L, Sanz JF, Lambert RM. J Phys Chem C, 2014, 118: 11677-11684 CrossRef Google Scholar

[172] Sanchez-Sanchez C, Orozco N, Holgado JP, Beaumont SK, Kyriakou G, Watson DJ, Gonzalez-Elipe AR, Feria L, Fernández Sanz J, Lambert RM. J Am Chem Soc, 2015, 137: 940-947 CrossRef PubMed Google Scholar

[173] Zhang R, Lyu G, Li DY, Liu PN, Lin N. Chem Commun, 2017, 53: 1731-1734 CrossRef PubMed Google Scholar

[174] Yue JY, Mo YP, Li SY, Dong WL, Chen T, Wang D. Chem Sci, 2017, 8: 2169-2174 CrossRef PubMed Google Scholar

[175] Tait SL. ACS Nano, 2008, 2: 617-621 CrossRef PubMed Google Scholar

[176] Zwaneveld NAA, Pawlak Ŕ, Abel M, Catalin D, Gigmes D, Bertin D, Porte L. J Am Chem Soc, 2008, 130: 6678-6679 CrossRef PubMed Google Scholar

[177] Clair S, Ourdjini O, Abel M, Porte L. Chem Commun, 2011, 47: 8028-8030 CrossRef PubMed Google Scholar

[178] Zhong Q, Ebeling D, Tschakert J, Gao Y, Bao D, Du S, Li C, Chi L, Schirmeisen A. Nat Commun, 2018, 9: 3277 CrossRef PubMed ADS Google Scholar

[179] Pavliček N, Schuler B, Collazos S, Moll N, Pérez D, Guitián E, Meyer G, Peña D, Gross L. Nat Chem, 2015, 7: 623-628 CrossRef PubMed ADS Google Scholar

[180] Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed WM, Jaspars M. Nat Chem, 2010, 2: 821-825 CrossRef PubMed ADS Google Scholar

[181] Schuler B, Fatayer S, Mohn F, Moll N, Pavliček N, Meyer G, Peña D, Gross L. Nat Chem, 2016, 8: 220-224 CrossRef PubMed ADS Google Scholar

[182] Albrecht TR, Grütter P, Horne D, Rugar D. J Appl Phys, 1991, 69: 668-673 CrossRef ADS Google Scholar

[183] Giessibl FJ. Rev Mod Phys, 2003, 75: 949-983 CrossRef ADS Google Scholar

[184] Moll N, Gross L, Mohn F, Curioni A, Meyer G. New J Phys, 2010, 12: 125020 CrossRef ADS Google Scholar

[185] Weymouth AJ, Hofmann T, Giessibl FJ. Science, 2014, 343: 1120-1122 CrossRef PubMed ADS Google Scholar

[186] Guo CS, Van Hove MA, Ren X, Zhao Y. J Phys Chem C, 2015, 119: 1483-1488 CrossRef Google Scholar

[187] Hämäläinen SK, van der Heijden N, van der Lit J, den Hartog S, Liljeroth P, Swart I. Phys Rev Lett, 2014, 113: 186102 CrossRef PubMed ADS Google Scholar

[188] Mohn F, Schuler B, Gross L, Meyer G. Appl Phys Lett, 2013, 102: 073109 CrossRef ADS Google Scholar

[189] Sweetman A, Jarvis SP, Rahe P, Champness NR, Kantorovich L, Moriarty P. Phys Rev B, 2014, 90: 165425 CrossRef ADS Google Scholar

[190] Mönig H, Hermoso DR, Díaz Arado O, Todorović M, Timmer A, Schüer S, Langewisch G, Pérez R, Fuchs H. ACS Nano, 2016, 10: 1201-1209 CrossRef Google Scholar

[191] Jelínek P. J Phys-Condens Matter, 2017, 29: 343002 CrossRef PubMed ADS Google Scholar

[192] de Oteyza DG, Gorman P, Chen YC, Wickenburg S, Riss A, Mowbray DJ, Etkin G, Pedramrazi Z, Tsai HZ, Rubio A, Crommie MF, Fischer FR. Science, 2013, 340: 1434-1437 CrossRef PubMed ADS Google Scholar

[193] Zint S, Ebeling D, Schlöder T, Ahles S, Mollenhauer D, Wegner HA, Schirmeisen A. ACS Nano, 2017, 11: 4183-4190 CrossRef Google Scholar

[194] Kawai S, Sadeghi A, Okamoto T, Mitsui C, Pawlak R, Meier T, Takeya J, Goedecker S, Meyer E. Small, 2016, 12: 5303-5311 CrossRef PubMed Google Scholar

[195] Kawai S, Takahashi K, Ito S, Pawlak R, Meier T, Spijker P, Canova FF, Tracey J, Nozaki K, Foster AS, Meyer E. ACS Nano, 2017, 11: 8122-8130 CrossRef Google Scholar

[196] Kocić N, Liu X, Chen S, Decurtins S, Krejčí O, Jelínek P, Repp J, Liu SX. J Am Chem Soc, 2016, 138: 5585-5593 CrossRef PubMed Google Scholar

[197] Rogers C, Chen C, Pedramrazi Z, Omrani AA, Tsai HZ, Jung HS, Lin S, Crommie MF, Fischer FR. Angew Chem Int Ed, 2015, 54: 15143-15146 CrossRef PubMed Google Scholar

[198] Riss A, Wickenburg S, Gorman P, Tan LZ, Tsai HZ, de Oteyza DG, Chen YC, Bradley AJ, Ugeda MM, Etkin G, Louie SG, Fischer FR, Crommie MF. Nano Lett, 2014, 14: 2251-2255 CrossRef PubMed ADS Google Scholar

[199] van der Lit J, Boneschanscher MP, Vanmaekelbergh D, Ijäs M, Uppstu A, Ervasti M, Harju A, Liljeroth P, Swart I. Nat Commun, 2013, 4: 2023 CrossRef PubMed ADS Google Scholar

[200] Albrecht F, Pavliček N, Herranz-Lancho C, Ruben M, Repp J. J Am Chem Soc, 2015, 137: 7424-7428 CrossRef PubMed Google Scholar

[201] Mohn F, Gross L, Meyer G. Appl Phys Lett, 2011, 99: 053106 CrossRef ADS Google Scholar

[202] Albers BJ, Schwendemann TC, Baykara MZ, Pilet N, Liebmann M, Altman EI, Schwarz UD. Nat Nanotech, 2009, 4: 307-310 CrossRef PubMed ADS Google Scholar

[203] Hohenberg P, Kohn W. Phys Rev, 1964, 136: B864-B871 CrossRef ADS Google Scholar

[204] Hofer WA, Foster AS, Shluger AL. Rev Mod Phys, 2003, 75: 1287-1331 CrossRef ADS Google Scholar

[205] Deng ZT, Lin H, Ji W, Gao L, Lin X, Cheng ZH, He XB, Lu JL, Shi DX, Hofer WA, Gao HJ. Phys Rev Lett, 2006, 96: 156102 CrossRef PubMed ADS Google Scholar

[206] Lin H, Rauba JMC, Thygesen KS, Jacobsen KW, Simmons MY, Hofer WA. Front Phys China, 2010, 5: 369-379 CrossRef ADS Google Scholar

[207] Chen X, Engle KM, Wang DH, Yu JQ. Angew Chem Int Ed, 2009, 48: 5094-5115 CrossRef PubMed Google Scholar

[208] Fan Q, Gottfried JM, Zhu J. Acc Chem Res, 2015, 48: 2484-2494 CrossRef PubMed Google Scholar

[209] Ritleng V, Sirlin C, Pfeffer M. Chem Rev, 2002, 102: 1731-1770 CrossRef Google Scholar

[210] Guo N, Lu R, Liu S, Ho GW, Zhang C. J Phys Chem C, 2014, 118: 21038-21041 CrossRef Google Scholar

[211] Zhang H, Kawashima K, Okumura M, Toshima N. J Mater Chem A, 2014, 2: 13498-13508 CrossRef Google Scholar

[212] Li Y, Lin N. Phys Rev B, 2011, 84: 125418 CrossRef ADS Google Scholar

  • Figure 1

    Reaction pathways of transforming methane (other alkanes) into CH3+ (corresponding alkylcarbonium ions) in super acid [31].

  • Figure 2

    Representative reactions of perfluoro-cis-2,3-dialkyloxaziridines and alkanes [38].

  • Figure 3

    Possible scenario for the Th(η3-allyl)4/DA-catalyzed H-D exchange of alkanes [59].

  • Figure 4

    (a) STM image of the Au(110) surface after depositing one monolayer n-dotriacontane molecules with the substrate held at 300 K. (b) STM image of the polymerized carbon chain after annealing the surface shown in (a) at 440 K [68].

  • Figure 5

    Comparison of the reactivity of n-dotriacontane on (1×2)- and (1×3)-Au(110) reaconstructed surface. (a) STM image of polymerized n-dotriacontane in the (1×3) region on Au(110). (b) STM image of partial polymerized n-dotriacontane in the (1×2) region on Au(110). (c) STM image shows the coexistence of pristine and polymerized n-dotriacontane on (1×2) and (1×3) region of the Au(110) surface respectively [69] (color online).

  • Figure 6

    (a) STM image after deposition of 0.05 ML n-C32H66 onCu(100) substrate with the substrate held at room temperature. (b) STM image shows a segment of polymerized carbon chain stripped from the edges laterally by tip manipulation [70] (color online).

  • Figure 7

    (a–d) STM topographic images of species formed at each reaction stage. (e–h) Corresponding NC-AFM frequency shift images of (a–d). (i–j) Corresponding structural models of (a–d), grey (C), violet (N), yellow (Cu) [73] (color online).

  • Figure 8

    The reaction pathways of the dimerization of alkene molecules in conventional chemistry and on-surface chemistry, respectively [77].

  • Figure 9

    The scheme and the STM image of the Heck reaction on Au(111) with Pd as catalyst [79] (color online).

  • Figure 10

    (a) Early proposal for the mechanism of the oxidative acetylenic coupling. (b) Mechanism of dimeric copper acetylides [86]. (c) Mechanism of surface-assisted covalent coupling of terminal alkynes on Ag(111) [87] (color online).

  • Figure 11

    (a) The structural model of 1,3,5-triethynylbenzene (TEB). (b) Self-assembly of TEB on a Ag(111) surface held at 170 K. (c) Oligomers formed by annealing a TEB decorated Ag(111) surface at 370 K. (d) Structural model of 1,3,5-tris-(4-ethynylphenyl)benzene (Ext-TEB). (e) Self-assembly of Ext-TEB on Ag(111) held at 152 K. (f) The covalent network formed by annealing the sample at 400 K [89] (color online).

  • Figure 12

    (a–f) STM images and corresponding structural model of the different reaction prodcuts with the alkynes reaction precursors [90] (color online).

  • Figure 13

    (a) STM image after depositing phenolacetylene on aCu(100) surface held at 120 K. (b) Zoomed STM image of (a) [8] (color online).

  • Figure 14

    (a) The one-step synthesis of tetraphenyl[4]radialenes via a novel [1+1+1+1] cyclotetramerization reaction pathway on the Cu(100) surface. (b) The high-resolution STM image of the tetramer reaction product. (c) The corresponding simulated STM image of the covalently bonded tetramer on the Cu(100) surface [95] (color online).

  • Figure 15

    Precursor of original Bergman reaction and the corresponding reaction mechanism [100].

  • Figure 16

    The mechanism of the cycloaromatization of (Z)-1,5-diyn-3-ene system [101].

  • Figure 17

    Radical polymerization initiated by the diradical generated in a Bergman cyclization [112].

  • Figure 18

    (a) Mechanism of the Bergman cyclization of DNHD. (b) Large-scale and (c) zoomed STM images after depositing DNHD onto a Cu(110) surface held at room temperature, and then anneaing at 400 K. (d) High-resolution STM image and (e) structural model of the formed molecular chain [114] (color online).

  • Figure 19

    (a) The scheme of the reaction between 9-ethynylphenanthrene (alkyne) and 4-azidobiphenyl (azide). (b) STM image after codeposition of alkyne and azide on a Cu(111) surface held at room temperature [118] (color online).

  • Figure 20

    (a) The Scheme of the raction between TFPB and TAPB on Au(111). (b–e) Representative STM images after annealing the TFPB and TAPB co-deposited Au(111) sample at 400 K for 20 min. The TFPB to TAPB precursor ratio is 4:1 (b), 2:1 (c), 1:1 (d), and 1:2 (e) [126]. (f) Condensation of trigonal precursors TAPB and linear precursors TPA forming SCOF-IC1. (g) Large-scale STM image and (h) high-resolution STM image of SCOF-IC1. (i) Condensation of trigonal precursors TFB and linear precursors PPDA to form SCOF-LZU1. (j) Large-scale STM image and (k) high-resolution STM image of SCOF-LZU1 [130] (color online).

  • Figure 21

    (a) Chemical structure of PTCDA, DATP and TAPT, respectively. (b) STM image of the reaction product between DATP and PTCDA. (c) STM image of the reaction product between TAPT and PTCDA [131] (color online).

  • Figure 22

    (a) Single and double tautomerization of TAPP and the formation of a TAPP dimer. (b) Large scale and (c) zoomed STM image after annealing the TAPP deposited Cu(111) surface at 420 K. (d) Large scale and (e) zoomed STM image after annealing the TAPP deposited Cu(111) surface at 520 K [134] (color online).

  • Figure 23

    (a) Scheme of the anticipated reaction pathway, illustrating the mechanism of the cyclotrimerization coupling of acetyls. (b–e) STM images after deposition of TAPB molecules with Ag(111) substrate held at 520, 570, 590, and 610 K, respectively [138] (color online).

  • Figure 24

    (a) Scheme of on-surface reduction of diepoxytetracenes to form genuine tetracene. (b–d) STM images acquired with a metal tip to illustrate the stepwise molecular conversion [139] (color online).

  • Figure 25

    (a) STM image of self-assembled structure of TDPB molecules on Au(111) substrate. (b–d) High resolution STM images of three kinds of islands after annealing. (e–h) Structural models of the self-assembled structures shown in (a–d) [140] (color online).

  • Figure 26

    Possible reaction mechanism of the Ullmann coupling reaction [144].

  • Figure 27

    Schematic summary of the mechanisms for the Ullmann coupling reaction of iodobenzene in adsorbed monolayers on Cu(111) [154].

  • Figure 28

    Schematic illustration of the STM tip-induced coupling reaction of two iodobenzene molecules [161].

  • Figure 29

    (a) Reaction scheme from precursor DBBA to armchair-type GNRs. (b) Overview STM image for the synthesis of armchair-type GNRs on Au(111). (c) Reaction scheme from precursor DBTP to chevron-type GNRs. (d) Overview STM image of chevron-type GNRs fabricated on a Au(111) surface [11] (color online).

  • Figure 30

    (A) Atomically high-resolution STM image of organogold intermediate. (B) STM image of the Au(111) surface covered by abundant dinaphthyl-aurate chains [9] (color online).

  • Figure 31

    Supposed mechanism for the copper-cocatalysed Sonogashira reaction [170].

  • Figure 32

    Scheme of surface Sonogashira reaction and other reactions [171] (color online).

  • Figure 33

    (a) Scheme of template-controlled Sonogashira reaction. (b) STM image of Cu-coordinated template T3. (c) STM image after dosing A. (d) STM image after loading Pd at room temperature. (e) STM image after annealing [173] (color online).

  • Figure 34

    (a, b) Scheme and corresponding STM image of 2D networks by dehydration of BDBA molecules. (c, d) Scheme and corresponding STM image of two-dimensional molecular networks formed from BDBA and HHTP molecules [176] (color online).

  • Figure 35

    (a) The STM tip is brought very close to the H-bonded layer and scanned over a small area at the position indicated by the arrow. (b) Complete disappearance of the H-bonded phase after polymerization. (c) STM image of H-bonded phase of BDBA. (d) After electron irradiation, the whole surface has polymerized [177] (color online).

  • Figure 36

    (a) Structural model and constant-height AFM image of pentacene [15]. (b) Stick models of the DPAT geometry. (c) High-resolution NC-AFM image of molecular structure obtained from three-dimensional spectroscopy data set [200]. (d–g) NC-AFM images of reactant 1,2-bis((2-ethynylphenyl)ethynyl)benzene and corresponding three products. (h–k) Schematic representation of reactant 1,2-bis((2-ethynylphenyl)ethynyl)benzene and corresponding three products [192] (color online).

  • Figure 37

    (a) Large-scale STM image of VBP dimers on Cu(110). (b) High-resolution STM image showing the formed diene compound with the scaled optimized model. (c) DFT-based STM simulation of the diene compound [77] (color online).

  • Figure 38

    (a) Two basic competitive reaction pathways for CH– and alkynyl-activation. (b) Theoretical DFT calculations and energy diagram for the CH-activation pathway at both Au and Ag surfaces. (c) DFT calculations and energy diagram for the alkynyl-activation pathway at both Au and Ag surfaces [91] (color online).

  • Figure 39

    (a) Energy diagrams for C–H activation of n-hexane at the terminal and penultimate methylene (C-2 and C-3) groups on Au(110)-(1×3). (b) Calculated energy diagrams for C–H activation of n-hexane at the terminal and penultimate methylene (C-2 and C-3) groups on Au(111) [68] (color online).

  • Figure 40

    (a) Energy diagram for C–H activation of n-hexane on Au(110)-(1×2). (b) Energy diagram for C–H activation of n-hexane on Au(110)-(1×3) [69] (color online).

  • Figure 41

    Theoretical calculation of the H-detachments of n-hexane on Cu(100). (a) Top view (upper panel) and side view (lower panel) of the optimized adsorption model of n-hexane on Cu(100). (b) Reaction pathway and the corresponding energy profile of the detachment of H(1) of n-hexane on the upper step of Cu(100). (c) Energy profiles of the detachment of H(1) (black), H(2) (red), and H(3) (blue), respectively, of n-hexane on the upper step of Cu(100) [70] (color online).

  • Figure 42

    Reaction pathway and the energy profiles in the dealkylation reaction catalized by adatoms on Au(111) [140] (color online).

  • Figure 43

    Monte Carlo simulations of molecular network growth [160] (color online).

  • Figure 44

    Monte Carlo simulations of two dimensional networks as the stoichiometric ratios of DATP (red) to TAPB (blue) are 1:2 to 2:3 and 3:1 [126] (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1