logo

SCIENTIA SINICA Chimica, Volume 49 , Issue 3 : 492-499(2019) https://doi.org/10.1360/N032018-00214

Surface construction and characterization of carbon nanomaterials

More info
  • ReceivedSep 20, 2018
  • AcceptedNov 13, 2018
  • PublishedJan 15, 2019

Abstract

On-surface synthesis has been proposed for constructing carbon nanomaterials in a controllable manner. In this feature article, we introduced our recent works on the synthesis of carbon nanomaterials, including conductive carbon nanowires and graphene-like nanoribbons. The precise atomic structures and electronic properties, as well as the growth mechanism were characterized by combined scanning tunneling microscopy, noncontact atomic force microscopy and density functional theory calculations. At last, the latest progress on surface reaction and synthesis was presented.


Funded by

国家自然科学基金(21603045,21425310)

国家科技部(2016YFA0200700,2017YFA0205000)


References

[1] Son YW, Cohen ML, Louie SG. Nature, 2006, 444: 347-349 CrossRef PubMed ADS Google Scholar

[2] Wang Z, Dong H, Li T, Hviid R, Zou Y, Wei Z, Fu X, Wang E, Zhen Y, Nørgaard K, Laursen BW, Hu W. Nat Commun, 2015, 6: 7478 CrossRef PubMed ADS Google Scholar

[3] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R. Nature, 2010, 466: 470-473 CrossRef PubMed ADS Google Scholar

[4] Iijima S. Nature, 1991, 354: 56-58 CrossRef ADS Google Scholar

[5] Chiang CK, Park YW, Heeger AJ, Shirakawa H, Louis EJ, MacDiarmid AG. J Chem Phys, 1978, 69: 5098-5104 CrossRef ADS Google Scholar

[6] Binning G, Rohrer H, Gerber C, Weibel E. Phys Rev Lett, 1982, 49: 57-61 CrossRef ADS Google Scholar

[7] Binnig G, Quate CF, Gerber C. Phys Rev Lett, 1986, 56: 930-933 CrossRef PubMed ADS Google Scholar

[8] Held PA, Fuchs H, Studer A. Chem Eur J, 2017, 23: 5874-5892 CrossRef PubMed Google Scholar

[9] Stepanow S, Lin N, Barth JV. J Phys-Condens Matter, 2008, 20: 184002 CrossRef ADS Google Scholar

[10] Berger G, Soubhye J, Meyer F. Polym Chem, 2015, 6: 3559–3580. Google Scholar

[11] Cañas-Ventura M, Xiao W, Wasserfallen D, Müllen K, Brune H, Barth J, Fasel R. Angew Chem, 2007, 119: 1846-1850 CrossRef Google Scholar

[12] Barth JV, Weckesser J, Trimarchi G, Vladimirova M, De Vita A, Cai C, Brune H, Günter P, Kern K. J Am Chem Soc, 2002, 124: 7991-8000 CrossRef Google Scholar

[13] De Feyter S, Miura A, Yao S, Chen Z, Würthner F, Jonkheijm P, Schenning APHJ, Meijer EW, De Schryver FC. Nano Lett, 2005, 5: 77-81 CrossRef PubMed ADS Google Scholar

[14] Barth JV. Annu Rev Phys Chem, 2007, 58: 375-407 CrossRef ADS Google Scholar

[15] Fan Q, Gottfried JM, Zhu J. Acc Chem Res, 2015, 48: 2484-2494 CrossRef PubMed Google Scholar

[16] Zhang YQ, Kepčija N, Kleinschrodt M, Diller K, Fischer S, Papageorgiou AC, Allegretti F, Björk J, Klyatskaya S, Klappenberger F, Ruben M, Barth JV. Nat Commun, 2012, 3: 1286 CrossRef PubMed ADS Google Scholar

[17] Schuler B, Fatayer S, Mohn F, Moll N, Pavliček N, Meyer G, Peña D, Gross L. Nat Chem, 2016, 8: 220-224 CrossRef PubMed ADS Google Scholar

[18] Cai L, Yu X, Liu M, Sun Q, Bao M, Zha Z, Pan J, Ma H, Ju H, Hu S, Xu L, Zou J, Yuan C, Jacob T, Björk J, Zhu J, Qiu X, Xu W. ACS Nano, 2018, 12: 7959-7966 CrossRef Google Scholar

[19] Andreev T, Barke I, Hövel H. Phys Rev B, 2004, 70: 205426 CrossRef ADS Google Scholar

[20] Talirz L, Söde H, Dumslaff T, Wang S, Sanchez-Valencia JR, Liu J, Shinde P, Pignedoli CA, Liang L, Meunier V, Plumb NC, Shi M, Feng X, Narita A, Müllen K, Fasel R, Ruffieux P. ACS Nano, 2017, 11: 1380-1388 CrossRef Google Scholar

[21] Bejot R, He A, Falck J, Mioskowski C. Angew Chem, 2007, 119: 1749-1752 CrossRef Google Scholar

[22] Levy O, Bino A. Chem Eur J, 2012, 18: 15944-15947 CrossRef PubMed Google Scholar

[23] Sun Q, Yu X, Bao M, Liu M, Pan J, Zha Z, Cai L, Ma H, Yuan C, Qiu X, Xu W. Angew Chem Int Ed, 2018, 57: 4035-4038 CrossRef PubMed Google Scholar

[24] Schuler B, Liu W, Tkatchenko A, Moll N, Meyer G, Mistry A, Fox D, Gross L. Phys Rev Lett, 2013, 111: 106103 CrossRef PubMed ADS Google Scholar

[25] Jiao L, Zhang L, Wang X, Diankov G, Dai H. Nature, 2009, 458: 877-880 CrossRef PubMed ADS Google Scholar

[26] Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS. Phys Rev B, 1996, 54: 17954-17961 CrossRef ADS Google Scholar

[27] Banhart F, Kotakoski J, Krasheninnikov AV. ACS Nano, 2010, 5: 26-41 CrossRef PubMed Google Scholar

[28] Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK. Rev Mod Phys, 2009, 81: 109-162 CrossRef ADS arXiv Google Scholar

[29] Kotakoski J, Krasheninnikov AV, Kaiser U, Meyer JC. Phys Rev Lett, 2011, 106: 105505 CrossRef PubMed ADS arXiv Google Scholar

[30] Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X, Zhong D. Nat Commun, 2017, 8: 14924 CrossRef PubMed ADS Google Scholar

[31] Krug CK, Fan Q, Fillsack F, Glowatzki J, Trebel N, Heuplick LJ, Koehler T, Gottfried JM. Chem Commun, 2018, 54: 9741-9744 CrossRef PubMed Google Scholar

[32] Wang T, Huang J, Lv H, Fan Q, Feng L, Tao Z, Ju H, Wu X, Tait SL, Zhu J. J Am Chem Soc, 2018, 140: 13421-13428 CrossRef PubMed Google Scholar

[33] Kawai S, Krejčí O, Foster AS, Pawlak R, Xu F, Peng L, Orita A, Meyer E. ACS Nano, 2018, 12: 8791-8797 CrossRef Google Scholar

  • Figure 1

    (a) Schematic illustration showing dehalogenative homocoupling of the ditopic molecular precursor, which results in the formation of PPV. (b) STM images showing the formation of PPV chains after deposition of BDBMB molecules on Au(111) held at RT and annealing to ∼400 K. (c) Equally scaled STM image and NC-AFM image recorded by CO-functionalized tip of a single PPV chain onAu(111). (d) STM image of a PPV chain on the Au(111) surface. (e) dI/dV spectra recorded at different sites. The dI/dV spectra were acquired by a lock-in amplifier while the sample bias was modulated by a 553 Hz, 30 mV (r.m.s) (color online).

  • Figure 2

    (a) Dehalogenative homocouplings of TBP and bTBP molecules. Upper: form 1,2-diphenylethyne. Lower: form PAEs (poly-(arylene ethynylene))chains. (b) High-resolution STM image and (c) NC-AFM image of the 1,2-diphenylethyne structure. (d) Large-scale and (e) close-up STM images showing the formation of PAEs molecular chains. Reprinted with permission from reference [23], published by John Wiley and Sons, 2018 (color online).

  • Figure 3

    (a) Coupling of BTCMB to form PPE molecular wires on Cu(111). (b) Structural characterization of PPE molecular wire. A STM image (I=20 pA, V=–0.6 V) and the corresponding (c) NC-AFM image of a nanowire acquired with a CO-functionalized tip. (d) dI/dV spectra taken at different sites of the nanowire and Cu(111) surface. (e) Comparison of calculated density of states (DOS) for PPE in vacuum and on Cu(111) surface (color online).

  • Figure 4

    Direct imaging of reaction intermediates of TCMB coupling on Cu(111). (a) Overview of the reaction pathway for the formation of DPE on Cu(111). (b–d), (e–g) are respectively STM images and DFT-optimized models of the typical intermediates. Scale bars: 300 pm (color online).

  • Figure 5

    (a) Synthetic strategy for graphene-like nanoribbons. (b) STM image of DBTP and Br4-PTCDA molecules co-deposited on Au(111) at RT (V=−2 V, I=2.2 nA) and STM image with overlaid molecular structures. (c) High-resolution STM image with partly overlaid molecular model of the graphene-like nanoribbon (V=−1.6 V, I=0.3 nA). Experimental and simulated AFM images of graphene-like nanoribbons. (d) Constant-height NC-AFM frequency shift image with CO-functionalized tip (oscillation amplitude AOSC=1 Å, V=0 V, z offset −2 Å below STM setpoint: −0.6 V, 20 pA). (e) Constant-height NC-AFM image with partly overlaid ribbon structure. (f) Simulated constant-height AFM image. (g) Differential conductance (dI/dV) spectra (V=−2 V, I=0.6 nA; modulation voltage Vr.m.s.=30 mV) (color online).

  • Figure 6

    (a) Formation of an organometallic chain and a hexamer macrocycle with C–Cu–C bonds from 1,3-dibromoazulene (DBAz) on Cu(111). (b) STM image of DBAz deposited on Cu(111) at 300 K, consisting of cyclic hexamer and chains. (c) Reaction of 1,1′-biphenyl-4-bromo-4′-ethynyl (BPBE) on a Ag(111) surface. (d) Oligomerization of TMSEA by on-surface desilylative homocoupling. (e) AFM image of oligomerization of TMSEA, and green arrows indicate the diacetylene unit (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号