SCIENTIA SINICA Chimica, Volume 49, Issue 5: 729-740(2019) https://doi.org/10.1360/N032018-00217

Research progress on porous carbon materials

More info
  • ReceivedOct 4, 2018
  • AcceptedNov 16, 2018
  • PublishedFeb 28, 2019


Porous carbon materials (PCMs) hold great promise in the fields of energy generation/conversion and environmental remediation due to their high specific surface areas, tunable physicochemical properties and cost-effective scaled-up production. The synthetic strategies and the structures of their precursors significantly affect the final performance and application spectrum of PCMs. Owing to the unlimited structures of polymer, carbonization of polymers to produce functional PCMs is one of the hot topics in the carbon materials research field. This review summarizes the current popular approaches that have been employed in the preparation and controlling of the macroscopic shape of PCMs. Meanwhile, the relationship between the structures of polymer precursor and resultant PCMs are carefully discussed. Finally, some directions that can further promote the development of PCMs in the future are also proposed to help readers grasp the challenges and opportunities for obtaining desirable PCMs.

Funded by



[1] Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. ACS Nano, 2008, 2: 463-470 CrossRef PubMed Google Scholar

[2] Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H. Nat Nanotech, 2008, 3: 538-542 CrossRef PubMed ADS arXiv Google Scholar

[3] Kohlmeyer RR, Lor M, Deng J, Liu H, Chen J. Carbon, 2011, 49: 2352-2361 CrossRef Google Scholar

[4] Liang B, Song Z, Wang M, Wang L, Jiang W. J Nanomater, 2013, 2013: 1-5 CrossRef Google Scholar

[5] Toth PS, Velický M, Bissett MA, Slater TJA, Savjani N, Rabiu AK, Rakowski AM, Brent JR, Haigh SJ, O'Brien P, Dryfe RAW. Adv Mater, 2016, 28: 8256-8264 CrossRef PubMed Google Scholar

[6] Chang K, Chen W, Ma L, Li H, Li H, Huang F, Xu Z, Zhang Q, Lee JY. J Mater Chem, 2011, 21: 6251 CrossRef Google Scholar

[7] Ferrari AC, Basko DM. Nat Nanotech, 2013, 8: 235-246 CrossRef PubMed ADS arXiv Google Scholar

[8] Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS. Nature, 2006, 442: 282-286 CrossRef PubMed ADS Google Scholar

[9] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS. Carbon, 2007, 45: 1558-1565 CrossRef Google Scholar

[10] Levendorf MP, Kim CJ, Brown L, Huang PY, Havener RW, Muller DA, Park J. Nature, 2012, 488: 627-632 CrossRef PubMed ADS Google Scholar

[11] Liu R, Zhang Y, Ning Z, Xu Y. Angew Chem Int Ed, 2017, 129: 15883-15888 CrossRef Google Scholar

[12] Cao Y, Huang J, Peng X, Cao D, Galaska A, Qiu S, Liu J, Khan MA, Young DP, Ryu JE, Feng H, Yerra N, Guo Z. Carbon, 2017, 115: 503-514 CrossRef Google Scholar

[13] Meng K, Liu Q, Huang Y, Wang Y. J Mater Chem A, 2015, 3: 6873-6877 CrossRef Google Scholar

[14] Sun X, Zhang Y, Song P, Pan J, Zhuang L, Xu W, Xing W. ACS Catal, 2013, 3: 1726-1729 CrossRef Google Scholar

[15] Singh SP, Li Y, Zhang J, Tour JM, Arnusch CJ. ACS Nano, 2018, 12: 289-297 CrossRef Google Scholar

[16] Zhao C, Jiao Y, Zhang L, Yang Y. New J Chem, 2018, 42: 2857-2864 CrossRef Google Scholar

[17] Lee J, Kim J, Hyeon T. Adv Mater, 2006, 18: 2073-2094 CrossRef Google Scholar

[18] Vu A, Qian Y, Stein A. Adv Energy Mater, 2012, 2: 1056-1085 CrossRef Google Scholar

[19] Kiciński W, Szala M, Bystrzejewski M. Carbon, 2014, 68: 1-32 CrossRef Google Scholar

[20] Li M, Xu F, Li H, Wang Y. Catal Sci Technol, 2016, 6: 3670-3693 CrossRef Google Scholar

[21] Benzigar MR, Talapaneni SN, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A. Chem Soc Rev, 2018, 47: 2680-2721 CrossRef PubMed Google Scholar

[22] Huang P, Li H, Huang X, Chen D. ACS Appl Mater Interfaces, 2017, 9: 21083-21088 CrossRef Google Scholar

[23] Zhang J, Xu D, Qian W, Zhu J, Yan F. Carbon, 2016, 105: 183-190 CrossRef Google Scholar

[24] Li Z, Guo K, Chen X. RSC Adv, 2017, 7: 30521-30532 CrossRef Google Scholar

[25] Zhang Z, Yi Z, Wang J, Tian X, Xu P, Shi G, Wang S. J Mater Chem A, 2017, 5: 17064-17072 CrossRef Google Scholar

[26] Nsabimana A, Bo X, Zhang Y, Li M, Han C, Guo L. J Colloid Interface Sci, 2014, 428: 133-140 CrossRef PubMed ADS Google Scholar

[27] Zhang Y, Dai W, Liu Y, Ma B. RSC Adv, 2017, 7: 8250-8257 CrossRef Google Scholar

[28] Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI, Suárez-García F, Tascón JMD, Lu GQ. J Am Chem Soc, 2009, 131: 5026-5027 CrossRef PubMed Google Scholar

[29] Song P, Zhu L, Bo X, Wang A, Wang G, Guo L. Electrochim Acta, 2014, 127: 307-314 CrossRef Google Scholar

[30] Bashkova S, Bandosz TJ. ChemSusChem, 2011, 4: 404-412 CrossRef PubMed Google Scholar

[31] Xie J, Zhao X, Wu M, Li Q, Wang Y, Yao J. Angew Chem Int Ed, 2018, 57: 9640-9644 CrossRef PubMed Google Scholar

[32] Zhang X, Zhu G, Wang M, Li J, Lu T, Pan L. Carbon, 2017, 116: 686-694 CrossRef Google Scholar

[33] Yang M, Liu Y, Chen H, Yang D, Li H. ACS Appl Mater Interfaces, 2016, 8: 28615-28623 CrossRef Google Scholar

[34] Silva R, Voiry D, Chhowalla M, Asefa T. J Am Chem Soc, 2013, 135: 7823-7826 CrossRef PubMed Google Scholar

[35] Hu L, Lu Y, Zhang T, Huang T, Zhu Y, Qian Y. ACS Appl Mater Interfaces, 2017, 9: 13813-13818 CrossRef Google Scholar

[36] Luo W, Wang B, Heron CG, Allen MJ, Morre J, Maier CS, Stickle WF, Ji X. Nano Lett, 2014, 14: 2225-2229 CrossRef PubMed ADS Google Scholar

[37] Malgras V, Ji Q, Kamachi Y, Mori T, Shieh FK, Wu KCW, Ariga K, Yamauchi Y. Bull Chem Soc Jpn, 2015, 88: 1171-1200 CrossRef Google Scholar

[38] Wang L, Hu X. Chem Asian J, 2018, 13: 1518-1529 CrossRef PubMed Google Scholar

[39] Knox JH, Kaur B, Millward GR. J Chromatogr A, 1986, 352: 3-25 CrossRef Google Scholar

[40] Sonobe N, Kyotani T, Tomita A. Carbon, 1988, 26: 573-578 CrossRef Google Scholar

[41] Kyotani T, Sonobe N, Tomita A. Nature, 1988, 331: 331-333 CrossRef ADS Google Scholar

[42] Yang DS, Bhattacharjya D, Inamdar S, Park J, Yu JS. J Am Chem Soc, 2012, 134: 16127-16130 CrossRef PubMed Google Scholar

[43] Liu R, Wu D, Feng X, Müllen K. Angew Chem Int Ed, 2010, 49: 2565-2569 CrossRef PubMed Google Scholar

[44] Lee DJ, Kim E, Kim D, Park J, Hong S. ACS Nano, 2013, 7: 6906-6913 CrossRef PubMed Google Scholar

[45] Kyotani T, Tsai L, Tomita A. Chem Mater, 1996, 8: 2109-2113 CrossRef Google Scholar

[46] Stein A, Wilson BE, Rudisill SG. Chem Soc Rev, 2013, 42: 2763-2803 CrossRef PubMed Google Scholar

[47] Liang C, Hong K, Guiochon GA, Mays JW, Dai S. Angew Chem Int Ed, 2004, 43: 5785-5789 CrossRef PubMed Google Scholar

[48] Liang C, Dai S. J Am Chem Soc, 2006, 128: 5316-5317 CrossRef PubMed Google Scholar

[49] Werner JG, Hoheisel TN, Wiesner U. ACS Nano, 2014, 8: 731-743 CrossRef PubMed Google Scholar

[50] Meng Y, Gu D, Zhang F, Shi Y, Yang H, Li Z, Yu C, Tu B, Zhao D. Angew Chem Int Ed, 2005, 44: 7053-7059 CrossRef PubMed Google Scholar

[51] Zhang F, Meng Y, Gu D, Yan Y, Yu C, Tu B, Zhao D. J Am Chem Soc, 2005, 127: 13508-13509 CrossRef PubMed Google Scholar

[52] Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Oya A, Yoshida S, Iizuka T. Carbon, 1997, 35: 1031-1033 CrossRef Google Scholar

[53] Yuan J, Márquez AG, Reinacher J, Giordano C, Janek J, Antonietti M. Polym Chem, 2011, 2: 1654 CrossRef Google Scholar

[54] Wang H, Min S, Ma C, Liu Z, Zhang W, Wang Q, Li D, Li Y, Turner S, Han Y, Zhu H, Abou-Hamad E, Hedhili MN, Pan J, Yu W, Huang KW, Li LJ, Yuan J, Antonietti M, Wu T. Nat Commun, 2017, 8: 13592 CrossRef PubMed ADS arXiv Google Scholar

[55] Dutta S, Bhaumik A, Wu KCW. Energy Environ Sci, 2014, 7: 3574-3592 CrossRef Google Scholar

[56] Rodríguez-Reinoso F, Molina-Sabio M, González MT. Carbon, 1995, 33: 15-23 CrossRef Google Scholar

[57] Shen W, Zheng J, Qin Z, Wang J. J Colloid Interface Sci, 2003, 264: 467-473 CrossRef ADS Google Scholar

[58] Lua AC, Guo J. Carbon, 2000, 38: 1089-1097 CrossRef Google Scholar

[59] Roberts AD, Li X, Zhang H. Chem Soc Rev, 2014, 43: 4341-4356 CrossRef PubMed Google Scholar

[60] Deng J, Xiong T, Xu F, Li M, Han C, Gong Y, Wang H, Wang Y. Green Chem, 2015, 17: 4053-4060 CrossRef Google Scholar

[61] Deng J, Li M, Wang Y. Green Chem, 2016, 18: 4824-4854 CrossRef Google Scholar

[62] Deng J, Xiong T, Wang H, Zheng A, Wang Y. ACS Sustain Chem Eng, 2016, 4: 3750-3756 CrossRef Google Scholar

[63] Yu ZL, Li GC, Fechler N, Yang N, Ma ZY, Wang X, Antonietti M, Yu SH. Angew Chem Int Ed, 2016, 55: 14623-14627 CrossRef PubMed Google Scholar

[64] Zeng L, Li W, Cheng J, Wang J, Liu X, Yu Y. RSC Adv, 2014, 4: 16920-16927 CrossRef Google Scholar

[65] Hao YN, Guo HL, Tian L, Kang X. RSC Adv, 2015, 5: 43750-43755 CrossRef Google Scholar

[66] Niu W, Li L, Liu X, Wang N, Liu J, Zhou W, Tang Z, Chen S. J Am Chem Soc, 2015, 137: 5555-5562 CrossRef PubMed Google Scholar

[67] Bo X, Guo L. Phys Chem Chem Phys, 2013, 15: 2459-2465 CrossRef PubMed ADS Google Scholar

[68] Tang J, Wang T, Salunkhe RR, Alshehri SM, Malgras V, Yamauchi Y. Chem Eur J, 2015, 21: 17293-17298 CrossRef PubMed Google Scholar

[69] Wang DW, Li F, Yin LC, Lu X, Chen ZG, Gentle IR, Lu GQM, Cheng HM. Chem Eur J, 2012, 18: 5345-5351 CrossRef PubMed Google Scholar

[70] Zhong M, Natesakhawat S, Baltrus JP, Luebke D, Nulwala H, Matyjaszewski K, Kowalewski T. Chem Commun, 2012, 48: 11516-11518 CrossRef PubMed Google Scholar

[71] Ashourirad B, Sekizkardes AK, Altarawneh S, El-Kaderi HM. Chem Mater, 2015, 27: 1349-1358 CrossRef Google Scholar

[72] Bear JC, McGettrick JD, Parkin IP, Dunnill CW, Hasell T. Micropor Mesopor Mater, 2016, 232: 189-195 CrossRef Google Scholar

[73] Wu J, Yang Z, Li X, Sun Q, Jin C, Strasser P, Yang R. J Mater Chem A, 2013, 1: 9889 CrossRef Google Scholar

[74] Duan J, Chen S, Jaroniec M, Qiao SZ. ACS Catal, 2015, 5: 5207-5234 CrossRef Google Scholar

[75] Zhang Y, Chen L, Meng Y, Xie J, Guo Y, Xiao D. J Power Sources, 2016, 335: 20-30 CrossRef ADS Google Scholar

[76] Liang Y, Liu H, Li Z, Fu R, Wu D. J Mater Chem A, 2013, 1: 15207 CrossRef Google Scholar

[77] Lu J, Bo X, Wang H, Guo L. Electrochim Acta, 2013, 108: 10-16 CrossRef Google Scholar

[78] Zhou X, Wang P, Zhang Y, Zhang X, Jiang Y. ACS Sustain Chem Eng, 2016, 4: 5585-5593 CrossRef Google Scholar

[79] Zhou X, Wang P, Zhang Y, Wang L, Zhang L, Zhang L, Xu L, Liu L. J Mater Chem A, 2017, 5: 12958-12968 CrossRef Google Scholar

[80] Zhao C, Liu G, Sun N, Zhang X, Wang G, Zhang Y, Zhang H, Zhao H. Chem Eng J, 2018, 334: 1270-1280 CrossRef Google Scholar

[81] Wang H, Jia J, Song P, Wang Q, Li D, Min S, Qian C, Wang L, Li YF, Ma C, Wu T, Yuan J, Antonietti M, Ozin GA. Angew Chem Int Ed, 2017, 56: 7847-7852 CrossRef PubMed Google Scholar

[82] Xiang Z, Cao D, Huang L, Shui J, Wang M, Dai L. Adv Mater, 2014, 26: 3315-3320 CrossRef PubMed Google Scholar

[83] Liu Y, Zhang N, Jiao L, Chen J. Adv Mater, 2015, 27: 6702-6707 CrossRef PubMed Google Scholar

[84] Wang DW, Li F, Chen ZG, Lu GQ, Cheng HM. Chem Mater, 2008, 20: 7195-7200 CrossRef Google Scholar

[85] Ding S, Zheng S, Xie M, Peng L, Guo X, Ding W. Micropor Mesopor Mater, 2011, 142: 609-613 CrossRef Google Scholar

[86] Gao J, Wang X, Zhang Y, Liu J, Lu Q, Liu M. Electrochim Acta, 2016, 207: 266-274 CrossRef Google Scholar

[87] Yang W, Yang W, Kong L, Song A, Qin X, Shao G. Carbon, 2018, 127: 557-567 CrossRef Google Scholar

[88] Paraknowitsch JP, Thomas A, Schmidt J. Chem Commun, 2011, 47: 8283-8285 CrossRef PubMed Google Scholar

[89] Guo Y, Zeng Z, Liu Y, Huang Z, Cui Y, Yang J. J Mater Chem A, 2018, 6: 4055-4067 CrossRef Google Scholar

[90] Wang H, Bo X, Zhang Y, Guo L. Electrochim Acta, 2013, 108: 404-411 CrossRef Google Scholar

[91] Qian H, Han F, Zhang B, Guo Y, Yue J, Peng B. Carbon, 2004, 42: 761-766 CrossRef Google Scholar

[92] Jin YZ, Gao C, Hsu WK, Zhu Y, Huczko A, Bystrzejewski M, Roe M, Lee CY, Acquah S, Kroto H, Walton DRM. Carbon, 2005, 43: 1944-1953 CrossRef Google Scholar

[93] Yang ZC, Zhang Y, Kong JH, Wong SY, Li X, Wang J. Chem Mater, 2013, 25: 704-710 CrossRef Google Scholar

[94] Bo X, Bai J, Ju J, Guo L. J Power Sources, 2011, 196: 8360-8365 CrossRef ADS Google Scholar

[95] Balach J, Wu H, Polzer F, Kirmse H, Zhao Q, Wei Z, Yuan J. RSC Adv, 2013, 3: 7979 CrossRef Google Scholar

[96] Sun X, Li Y. J Colloid Interface Sci, 2005, 291: 7-12 CrossRef PubMed ADS Google Scholar

[97] Pan H, Yang J, Wang S, Xiong Z, Cai W, Liu J. J Mater Chem A, 2015, 3: 13827-13834 CrossRef Google Scholar

[98] An GH, Ahn HJ, Hong WK. J Power Sources, 2015, 274: 536-541 CrossRef ADS Google Scholar

[99] Reculusa S, Agricole B, Derré A, Couzi M, Sellier E, Ravaine S, Delhaès P. Adv Mater, 2006, 18: 1705-1708 CrossRef Google Scholar

[100] Gierszal KP, Jaroniec M. J Am Chem Soc, 2006, 128: 10026-10027 CrossRef PubMed Google Scholar

[101] Feng D, Lv Y, Wu Z, Dou Y, Han L, Sun Z, Xia Y, Zheng G, Zhao D. J Am Chem Soc, 2011, 133: 15148-15156 CrossRef PubMed Google Scholar

[102] Hatori H, Takagi H, Yamada Y. Carbon, 2004, 42: 1169-1173 CrossRef Google Scholar

[103] Hatori H, Kobayashi T, Hanzawa Y, Yamada Y, Iimura Y, Kimura T, Shiraishi M. J Appl Polym Sci, 2000, 79: 836-841 CrossRef Google Scholar

[104] Wang H, Min S, Wang Q, Li D, Casillas G, Ma C, Li Y, Liu Z, Li LJ, Yuan J, Antonietti M, Wu T. ACS Nano, 2017, 11: 4358-4364 CrossRef Google Scholar

[105] Wang H, Wang L, Wang Q, Ye S, Sun W, Shao Y, Jiang Z, Qiao Q, Zhu Y, Song P, Li D, He L, Zhang X, Yuan J, Wu T, Ozin GA. Angew Chem Int Ed, 2018, 57: 12360-12364 CrossRef PubMed Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有