logo

SCIENTIA SINICA Chimica, Volume 49, Issue 5: 716-728(2019) https://doi.org/10.1360/N032018-00231

Recent progress of noncovalent interactions-based nonfullerene acceptor photovoltaic materials

More info
  • ReceivedOct 25, 2018
  • AcceptedDec 24, 2018
  • PublishedFeb 27, 2019

Abstract

Nonfullerene acceptors (NFAs) photovoltaic materials have been a hot research topic in the field of energy materials due to their great potential in making large­area flexible devices. Compared to fullerene derivatives, NFAs exhibit great exploitation potentialities such as tunable absorption windows and energy levels, large electron mobilities, and facile synthesis with low fabrication cost. Noncovalent interaction-based acceptor materials are important components for NFAs. The planarity, charge carrier mobility and solar light spectra coverage could be enhanced for NFAs by noncovalent interaction through introducing heteroatoms, such as O, F, N and Se, leading to improved photovoltaic performance. In this perspective, we review the recent developments of NFAs based on noncovalent interactions and discuss the effect of this interactions on molecular structure and its photovoltaic properties to help the readers to understand the challenges and opportunities in developing high performance organic solar cells.


Funded by

国家自然科学基金(51673097)


References

[1] Dou L, Liu Y, Hong Z, Li G, Yang Y. Chem Rev, 2015, 115: 12633-12665 CrossRef PubMed Google Scholar

[2] Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat Mater, 2017, 16: 363-369 CrossRef PubMed ADS Google Scholar

[3] Kaltenbrunner M, White MS, Głowacki ED, Sekitani T, Someya T, Sariciftci NS, Bauer S. Nat Commun, 2012, 3: 770 CrossRef PubMed ADS Google Scholar

[4] Heeger AJ. Adv Mater, 2014, 26: 10-28 CrossRef Google Scholar

[5] Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789-1791 CrossRef ADS Google Scholar

[6] Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148-7151 CrossRef PubMed Google Scholar

[7] Che X, Li Y, Qu Y, Forrest SR. Nat Energy, 2018, 3: 422-427 CrossRef ADS Google Scholar

[8] Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094-1098 CrossRef PubMed ADS Google Scholar

[9] Min J, Zhang ZG, Zhang S, Li Y. Chem Mater, 2012, 24: 3247-3254 CrossRef Google Scholar

[10] Price SC, Stuart AC, Yang L, Zhou H, You W. J Am Chem Soc, 2011, 133: 4625-4631 CrossRef PubMed Google Scholar

[11] Liao SH, Jhuo HJ, Cheng YS, Chen SA. Adv Mater, 2013, 25: 4766-4771 CrossRef PubMed Google Scholar

[12] Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28: 4734-4739 CrossRef PubMed Google Scholar

[13] Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell TP, Chen Y. J Am Chem Soc, 2015, 137: 3886-3893 CrossRef PubMed Google Scholar

[14] Kan B, Zhang Q, Li M, Wan X, Ni W, Long G, Wang Y, Yang X, Feng H, Chen Y. J Am Chem Soc, 2014, 136: 15529-15532 CrossRef PubMed Google Scholar

[15] Lin Y, Zhan X. Adv Energy Mater, 2015, 5: 1501063 CrossRef Google Scholar

[16] Shastry TA, Hartnett PE, Wasielewski MR, Marks TJ, Hersam MC. ACS Energy Lett, 2016, 1: 548-555 CrossRef Google Scholar

[17] Wadsworth A, Ashraf RS, Abdelsamie M, Pont S, Little M, Moser M, Hamid Z, Neophytou M, Zhang W, Amassian A, Durrant JR, Baran D, McCulloch I. ACS Energy Lett, 2017, 2: 1494-1500 CrossRef Google Scholar

[18] Baran D, Kirchartz T, Wheeler S, Dimitrov S, Abdelsamie M, Gorman J, Ashraf RS, Holliday S, Wadsworth A, Gasparini N, Kaienburg P, Yan H, Amassian A, Brabec CJ, Durrant JR, McCulloch I. Energy Environ Sci, 2016, 9: 3783-3793 CrossRef PubMed Google Scholar

[19] Ko EY, Park GE, Lee JH, Kim HJ, Lee DH, Ahn H, Uddin MA, Woo HY, Cho MJ, Choi DH. ACS Appl Mater Interfaces, 2017, 9: 8838-8847 CrossRef Google Scholar

[20] Lin Y, Zhang ZG, Bai H, Wang J, Yao Y, Li Y, Zhu D, Zhan X. Energy Environ Sci, 2015, 8: 610-616 CrossRef Google Scholar

[21] Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1: 16089 CrossRef ADS Google Scholar

[22] Nikolis VC, Benduhn J, Holzmueller F, Piersimoni F, Lau M, Zeika O, Neher D, Koerner C, Spoltore D, Vandewal K. Adv Energy Mater, 2017, 7: 1700855 CrossRef Google Scholar

[23] Li Y, Zhong L, Gautam B, Bin HJ, Lin JD, Wu FP, Zhang Z, Jiang ZQ, Zhang ZG, Gundogdu K, Li Y, Liao LS. Energy Environ Sci, 2017, 10: 1610-1620 CrossRef Google Scholar

[24] Zhang H, Li S, Xu B, Yao H, Yang B, Hou J. J Mater Chem A, 2016, 4: 18043-18049 CrossRef Google Scholar

[25] Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336-1343 CrossRef PubMed Google Scholar

[26] Li X, Huang H, Bin H, Peng Z, Zhu C, Xue L, Zhang ZG, Zhang Z, Ade H, Li Y. Chem Mater, 2017, 29: 10130-10138 CrossRef Google Scholar

[27] Gao HH, Sun Y, Wan X, Ke X, Feng H, Kan B, Wang Y, Zhang Y, Li C, Chen Y. Adv Sci, 2018, 5: 1800307 CrossRef PubMed Google Scholar

[28] Li Y, Liu X, Wu FP, Zhou Y, Jiang ZQ, Song B, Xia Y, Zhang ZG, Gao F, Inganäs O, Li Y, Liao LS. J Mater Chem A, 2016, 4: 5890-5897 CrossRef Google Scholar

[29] Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Adv Mater, 2017, 29: 1700144 CrossRef PubMed Google Scholar

[30] Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56: 3045-3049 CrossRef PubMed Google Scholar

[31] Yang L, Li M, Song J, Zhou Y, Bo Z, Wang H. Adv Funct Mater, 2018, 28: 1705927 CrossRef Google Scholar

[32] Zhang Z, Yu J, Yin X, Hu Z, Jiang Y, Sun J, Zhou J, Zhang F, Russell TP, Liu F, Tang W. Adv Funct Mater, 2018, 28: 1705095 CrossRef Google Scholar

[33] Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J Am Chem Soc, 2017, 139: 3356-3359 CrossRef PubMed Google Scholar

[34] Huang H, Zhou N, Ortiz RP, Chen Z, Loser S, Zhang S, Guo X, Casado J, López Navarrete JT, Yu X, Facchetti A, Marks TJ. Adv Funct Mater, 2014, 24: 2782-2793 CrossRef Google Scholar

[35] Xia B, Lu K, Yuan L, Zhang J, Zhu L, Zhu X, Deng D, Li H, Wei Z. Polym Chem, 2016, 7: 1323-1329 CrossRef Google Scholar

[36] Xin H, Guo X, Ren G, Watson MD, Jenekhe SA. Adv Energy Mater, 2012, 2: 575-582 CrossRef Google Scholar

[37] Li S, Zhan L, Liu F, Ren J, Shi M, Li CZ, Russell TP, Chen H. Adv Mater, 2018, 30: 1705208 CrossRef PubMed Google Scholar

[38] Huang H, Chen Z, Ponce Ortiz R, Newman C, Usta H, Lou S, Youn J, Noh YY, Baeg KJ, Chen LX, Facchetti A, Marks TJ, Marks T. J Am Chem Soc, 2012, 134: 10966-10973 CrossRef PubMed Google Scholar

[39] Kim FS, Guo X, Watson MD, Jenekhe SA. Adv Mater, 2010, 22: 478-482 CrossRef PubMed Google Scholar

[40] Guo X, Quinn J, Chen Z, Usta H, Zheng Y, Xia Y, Hennek JW, Ortiz RP, Marks TJ, Facchetti A. J Am Chem Soc, 2013, 135: 1986-1996 CrossRef PubMed Google Scholar

[41] Usta H, Yilmaz MD, Avestro AJ, Boudinet D, Denti M, Zhao W, Stoddart JF, Facchetti A. Adv Mater, 2013, 25: 4327-4334 CrossRef PubMed Google Scholar

[42] Huang H, Yang L, Facchetti A, Marks TJ. Chem Rev, 2017, 117: 10291-10318 CrossRef PubMed Google Scholar

[43] Zhang S, Qin Y, Uddin MA, Jang B, Zhao W, Liu D, Woo HY, Hou J. Macromolecules, 2016, 49: 2993-3000 CrossRef ADS Google Scholar

[44] Li Z, Lin H, Jiang K, Carpenter J, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H. Nano Energy, 2015, 15: 607-615 CrossRef Google Scholar

[45] Park GE, Choi S, Shin J, Cho MJ, Choi DH. Org Electron, 2016, 34: 157-163 CrossRef Google Scholar

[46] Hu H, Jiang K, Kim JH, Yang G, Li Z, Ma T, Lu G, Qu Y, Ade H, Yan H. J Mater Chem A, 2016, 4: 5039-5043 CrossRef Google Scholar

[47] Xia D, Wu Y, Wang Q, Zhang A, Li C, Lin Y, Colberts FJM, van Franeker JJ, Janssen RAJ, Zhan X, Hu W, Tang Z, Ma W, Li W. Macromolecules, 2016, 49: 6445-6454 CrossRef ADS Google Scholar

[48] Lin H, Chen S, Li Z, Lai JYL, Yang G, McAfee T, Jiang K, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H. Adv Mater, 2015, 27: 7299-7304 CrossRef PubMed Google Scholar

[49] Qin R, Li W, Li C, Du C, Veit C, Schleiermacher HF, Andersson M, Bo Z, Liu Z, Inganäs O, Wuerfel U, Zhang F. J Am Chem Soc, 2009, 131: 14612-14613 CrossRef PubMed Google Scholar

[50] Jung JW, Jo JW, Chueh CC, Liu F, Jo WH, Russell TP, Jen AKY. Adv Mater, 2015, 27: 3310-3317 CrossRef PubMed Google Scholar

[51] Long X, Ding Z, Dou C, Zhang J, Liu J, Wang L. Adv Mater, 2016, 28: 6504-6508 CrossRef PubMed Google Scholar

[52] Yao H, Chen Y, Qin Y, Yu R, Cui Y, Yang B, Li S, Zhang K, Hou J. Adv Mater, 2016, 28: 8283-8287 CrossRef PubMed Google Scholar

[53] Wang W, Zhao B, Cong Z, Xie Y, Wu H, Liang Q, Liu S, Liu F, Gao C, Wu H, Cao Y. ACS Energy Lett, 2018, 3: 1499-1507 CrossRef Google Scholar

[54] Yu S, Chen Y, Yang L, Ye P, Wu J, Yu J, Zhang S, Gao Y, Huang H. J Mater Chem A, 2017, 5: 21674-21678 CrossRef Google Scholar

[55] Liu Y, Li M, Zhou X, Jia QQ, Feng S, Jiang P, Xu X, Ma W, Li HB, Bo Z. ACS Energy Lett, 2018, 3: 1832-1839 CrossRef Google Scholar

[56] Liu Y, Zhang C’, Hao D, Zhang Z, Wu L, Li M, Feng S, Xu X, Liu F, Chen X, Bo Z. Chem Mater, 2018, 30: 4307-4312 CrossRef Google Scholar

[57] Lee J, Ko SJ, Seifrid M, Lee H, McDowell C, Luginbuhl BR, Karki A, Cho K, Nguyen TQ, Bazan GC. Adv Energy Mater, 2018, 8: 1801209 CrossRef Google Scholar

[58] Cheng P, Wang J, Zhang Q, Huang W, Zhu J, Wang R, Chang SY, Sun P, Meng L, Zhao H, Cheng HW, Huang T, Liu Y, Wang C, Zhu C, You W, Zhan X, Yang Y. Adv Mater, 2018, 30: 1801501 CrossRef PubMed Google Scholar

[59] Liu D, Kan B, Ke X, Zheng N, Xie Z, Lu D, Liu Y. Adv Energy Mater, 2018, 8: 1801618 CrossRef Google Scholar

[60] Li S, Zhan L, Zhao W, Zhang S, Ali B, Fu Z, Lau TK, Lu X, Shi M, Li CZ, Hou J, Chen H. J Mater Chem A, 2018, 6: 12132-12141 CrossRef Google Scholar

[61] Zhang ZQ, Zhang SH, Liu ZX, Zhang ZG, Li YF, Li CZ, Chen HZ. Acta Phys-Chim Sin, 2019, 35: 394–400. Google Scholar

[62] Uddin MA, Kim Y, Younts R, Lee W, Gautam B, Choi J, Wang C, Gundogdu K, Kim BJ, Woo HY. Macromolecules, 2016, 49: 6374-6383 CrossRef ADS Google Scholar

[63] Zhang H, Wang S, Li Y, Zhang B, Du C, Wan X, Chen Y. Tetrahedron, 2009, 65: 4455-4463 CrossRef Google Scholar

[64] Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, You J, Yang Y, Chen Y. Adv Energy Mater, 2011, 1: 771-775 CrossRef Google Scholar

[65] Cui C, Guo X, Min J, Guo B, Cheng X, Zhang M, Brabec CJ, Li Y. Adv Mater, 2015, 27: 7469-7475 CrossRef PubMed Google Scholar

[66] Zhou J, Wan X, Liu Y, Long G, Wang F, Li Z, Zuo Y, Li C, Chen Y. Chem Mater, 2011, 23: 4666-4668 CrossRef Google Scholar

[67] Lin Y, Zhan X. Acc Chem Res, 2016, 49: 175-183 CrossRef PubMed Google Scholar

[68] Lin Y, Li T, Zhao F, Han L, Wang Z, Wu Y, He Q, Wang J, Huo L, Sun Y, Wang C, Ma W, Zhan X. Adv Energy Mater, 2016, 6: 1600854 CrossRef Google Scholar

[69] Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118: 3447-3507 CrossRef PubMed Google Scholar

[70] Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28: 9423-9429 CrossRef PubMed Google Scholar

[71] Holliday S, Ashraf RS, Wadsworth A, Baran D, Yousaf SA, Nielsen CB, Tan CH, Dimitrov SD, Shang Z, Gasparini N, Alamoudi M, Laquai F, Brabec CJ, Salleo A, Durrant JR, McCulloch I. Nat Commun, 2016, 7: 11585 CrossRef PubMed ADS Google Scholar

[72] Welch GC, Perez LA, Hoven CV, Zhang Y, Dang XD, Sharenko A, Toney MF, Kramer EJ, Nguyen TQ, Bazan GC. J Mater Chem, 2011, 21: 12700-12709 CrossRef Google Scholar

[73] Zhang Z, Feng L, Xu S, Liu Y, Peng H, Zhang ZG, Li Y, Zou Y. Adv Sci, 2017, 4: 1700152 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Inverted BHJ solar cell architecture. (b) Typical current density-voltage (J-V) curve of an organic solar cell (color online).

  • Figure 2

    Chemical structures of polymer and small molecule donors.

  • Figure 3

    Chemical structures and DFT-computed structure of TVT [38] (color online).

  • Figure 4

    (a) Chemical rigidification vs. supramolecular rigidification and (b) TVTOEt-BDTR and TVTOEt-NDIR n-type polymer [34] (color online).

  • Figure 5

    Chemical structures (a) and DFT-computed structure (b) of T-T-2F and T-T [43] (color online).

  • Figure 6

    Chemical structures of polymer accepters (color online).

  • Figure 7

    (a) Theoretical simulation of the intramolecular dipole moments of half molecule models using a DFT method; (b) molecular structure of IEIC and IEICO-4F [30] (color online).

  • Figure 8

    (a) Simulated molecular geometries obtained by DFT calculations for simplified molecules of IDT-BC6 and IDT-BOC6. (b) Possible rotamers (BO-C and Th-BOC) in IDT-BOC6 and (c) potential energy surface scan of BO-C and Th-BOC [33] (color online).

  • Figure 9

    Chemical and simulated structure of ITOIC-2F and stacking modes of two neighboring molecules of ITOIC-2F [56] (color online).

  • Figure 10

    (a) Schematic diagrams of different models for charge transfer. (b) Molecular structures of donor (FTAZ), acceptor (IDIC), and third components (ITIC-Th, ITIC-Th-S, ITIC-Th-O). (c) Energy levels and optical bandgaps of FTAZ, IDIC, ITIC-Th, ITIC-Th-S, and ITIC-Th-O [58] (color online).

  • Figure 11

    (a) Chemical structures of IDTO-T-4F, IDTO-Se-4F, IDTO-TT-4F, and PBDT-T. (b) Normalized UV-vis absorption spectra of PBDB-T, IDTO-T-4F, IDTO-Se-4F, and IDTO-TT-4F in thin films. (c) Energy level diagrams for PBDB-T polymer donor and IDTO-based acceptors [59] (color online).

  • Figure 12

    Chemical structure and geometry of DF-PCIC [37] (color online).

  • Figure 13

    Chemical structure of noncovalent interactions-based small molecular acceptors (color online).

  • Table 1   Absorption, energy level and mobility of noncovalent interactions-based NFAs

    化合物

    λs,max (nm)

    λf,max (nm)

    Eg,opt (eV)

    HOMO (eV)

    LUMO (eV)

    μe (cm2 V–1 s–1)a)

    参考文献

    IEICO-4F

    806

    890

    1.24

    −5.44

    −4.19

    1.4×10−4 a)

    [30]

    IDT-BOC6

    688

    1.63

    −5.51

    −3.78

    5.0×10−4

    [33]

    P7

    744, 396

    725, 399

    1.43

    −5.63

    −4.04

    5.1×10−3

    [34]

    DF-PCIC

    671

    645, 696

    1.59

    −5.49

    −3.77

    2.6×10−5

    [37]

    P(NDI2OD-T2F)

    630

    1.59

    −5.50

    −3.91

    5.1×10−3

    [50]

    P-BNBP-fBT

    593

    630

    1.86

    −5.87

    −3.62

    2.4×10−4

    [51]

    IEICO

    785

    805

    1.34

    −5.32

    −3.95

    1.5×10−3

    [52]

    iIEICO-4F

    708

    1.56

    2.6×10−4

    [53]

    IDT-Tz

    649

    699

    1.53

    −5.41

    −3.96

    2.1×10−4

    [54]

    IDTOT2F

    723

    765

    1.44

    −5.54

    −3.94

    4.0×10 −5

    [55]

    ITOIC

    722

    734

    1.55

    −5.48

    −3.75

    2.43×10 −4

    [56]

    ITOIC-F

    732

    755

    1.50

    −5.52

    −3.82

    4.92×10−4

    [56]

    ITOIC-2F

    737

    769

    1.45

    −5.57

    −3.87

    6.02×10−4

    [56]

    IOTIC-2F

    794

    839

    1.31

    −5.34

    −4.06

    2.1×10−5

    [57]

    ITOTIC-2F

    791

    809

    1.32

    −5.22

    −4.11

    5.1×10−6

    [57]

    ITIC-Th-O

    1.40

    −5.36

    −3.91

    2.9×10−5

    [58]

    ITIC-Th-S

    1.45

    −5.41

    −3.86

    2.6×10−5

    [58]

    IDTO-Se-4F

    756

    806

    1.40

    −5.48

    −3.90

    4.5×10−5

    [59]

    IDTO-TT-4F

    738

    777

    1.38

    −5.39

    −3.89

    2.2×10−5

    [59]

    HF-PCIC

    682

    716

    1.50

    −5.53

    −3.83

    6.4×10−4

    [60]

    HFO-PCIC

    686

    723

    1.48

    −5.50

    −3.81

    5.1×10−4

    [60]

    OF-PCIC

    660

    702

    1.59

    −5.66

    −3.86

    5.7×10−4

    [60]

    ICTP

    1.63

    −5.56

    −3.84

    2.0×10−5

    [60]

    薄膜

  • Table 2   Performances of noncovalent interactions-based NFAs used as acceptor in organic solar cells

    供体/受体

    VOC (V)

    JSC(mA cm−2)

    FF (%)

    PCE (%)

    参考文献

    PTB7-Th:IEICO-4F

    0.739

    22.8

    59.4

    10

    [30]

    PBDB-T:IDT-BOC6

    1.01

    17.52

    54

    9.6

    [33]

    PTB7:P7

    0.86

    4.11

    46

    1.7

    [34]

    PBDB-T:DF-PCIC

    0.91

    15.66

    72

    10.14

    [37]

    PBDTT-TT-F:P(NDIDT-FT2)

    0.81

    13.53

    62

    6.28

    [50]

    PTB7-Th:P-BNBP-fBT

    1.07

    12.69

    47

    6.26

    [51]

    PBDTTT-E-T:IEICO

    0.82

    17.7

    58

    8.4

    [52]

    J52:i-IEICO-4F

    0.849

    22.86

    67.9

    13.18

    [53]

    PBDB-T:IDT-Tz

    0.88

    13.67

    70.8

    8.52

    [54]

    PBDB-T:IDTOT2F

    0.85

    20.87

    72

    12.79

    [55]

    PBDB-T:ITOIC

    1.024

    15.73

    55.1

    8.87

    [56]

    PBDB-T:ITOIC-F

    0.946

    18.60

    60.5

    10.65

    [56]

    PBDB-T:ITOIC-2F

    0.897

    21.04

    64.5

    12.17

    [56]

    PTB7-Th:IOTIC-2F

    0.817

    21.9

    65

    11.6

    [57]

    PTB7-Th:ITOTIC-2F

    0.785

    7.0

    61

    3.3

    [57]

    FTAZ/ITIC-Th-O/IDIC

    0.85

    18.5

    71.9

    11.3

    [58]

    FTAZ/ITIC-Th-S/IDIC

    0.85

    17.8

    71.2

    10.8

    [58]

    PBDB-T:IDTO-T-4F

    0.864

    20.12

    72.7

    12.62

    [59]

    PBDB-T:IDTO-Se-4F

    0.831

    18.55

    69.2

    10.67

    [59]

    PBDB-T:IDTO-TT-4F

    0.856

    17.21

    69.4

    10.21

    [59]

    PBDB-TF:HF-PCIC

    0.91

    17.81

    70.77

    11.49

    [60]

    PBDB-TF:HFO-PCIC

    0.93

    12.62

    70.99

    8.36

    [60]

    PBDB-TF:OF-PCIC

    0.91

    13.76

    73.37

    9.09

    [60]

    PBDB-T:ICTP

    0.97

    8.29

    55

    4.43

    [61]

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1