logo

SCIENTIA SINICA Chimica, Volume 49, Issue 5: 801-810(2019) https://doi.org/10.1360/N032018-00232

SERS detection of heterogeneous reactions at catalytic interfaces using bifunctional metal nanoparticles

More info
  • ReceivedOct 29, 2018
  • AcceptedDec 4, 2018
  • PublishedFeb 28, 2019

Abstract

Insight into the molecular changes at catalytic interfaces is of fundamental importance not only for understanding reaction mechanism but also for rational design of high-efficient catalysts. Surface-enhanced Raman scattering (SERS) is a sensitive spectroscopic technique which could be used in label-free monitoring of the molecular transformations on noble metals. This review introduces the synthesis of bifunctional metal nanoparticles comprising both SERS-active and catalytically-active metals. The use of the bifunctional nanoparticles in SERS monitoring of metal-catalyzed chemical reactions, such as the reduction of 4-nitrothiophenol, the photocatalytic oxidation of 4-aminothiophenol and the oxidation of carbon monoxide, is summarized. Finally, the limitations of SERS study of conventional catalytic reactions are discussed and the possible future development is prospected.


Funded by

国家自然科学基金(21775074,51601098)

天津市自然科学基金(17JCQNJC05400)


References

[1] Kim H, Kosuda KM, Van Duyne RP, Stair PC. Chem Soc Rev, 2010, 39: 4820-4844 CrossRef PubMed Google Scholar

[2] Xie W, Walkenfort B, Schlücker S. J Am Chem Soc, 2013, 135: 1657-1660 CrossRef PubMed Google Scholar

[3] Richner G, van Bokhoven JA, Neuhold YM, Makosch M, Hungerbühler K. Phys Chem Chem Phys, 2011, 13: 12463-12471 CrossRef PubMed ADS Google Scholar

[4] Chowdhury B, Bravo-Suarez JJ, Mimura N, Lu J, Bando KK, Tsubota S, Haruta M. J Phys Chem B, 2006, 110: 22995-22999 CrossRef PubMed Google Scholar

[5] Maclennan A, Banerjee A, Hu Y, Miller JT, Scott RWJ. ACS Catal, 2013, 3: 1411-1419 CrossRef Google Scholar

[6] Stiles PL, Dieringer JA, Shah NC, van Duyne RP. Annu Rev Anal Chem, 2008, 1: 601-626 CrossRef ADS Google Scholar

[7] Xie W, Schlücker S. Chem Commun, 2018, 54: 2326-2336 CrossRef PubMed Google Scholar

[8] Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B. Chem Rev, 2018, 118: 4946-4980 CrossRef PubMed Google Scholar

[9] Li JF, Zhang YJ, Ding SY, Panneerselvam R, Tian ZQ. Chem Rev, 2017, 117: 5002-5069 CrossRef PubMed Google Scholar

[10] Moskovits M. J Raman Spectrosc, 2010, 36: 485-496 CrossRef ADS Google Scholar

[11] Reguera J, Langer J, Jiménez de Aberasturi D, Liz-Marzán LM. Chem Soc Rev, 2017, 46: 3866-3885 CrossRef PubMed Google Scholar

[12] Ding SY, You EM, Tian ZQ, Moskovits M. Chem Soc Rev, 2017, 46: 4042-4076 CrossRef PubMed Google Scholar

[13] Schlücker S. Angew Chem Int Ed, 2014, 53: 4756-4795 CrossRef PubMed Google Scholar

[14] Xie W, Schlücker S. Rep Prog Phys, 2014, 77: 116502 CrossRef PubMed ADS Google Scholar

[15] Cardinal MF, Vander Ende E, Hackler RA, McAnally MO, Stair PC, Schatz GC, Van Duyne RP. Chem Soc Rev, 2017, 46: 3886-3903 CrossRef PubMed Google Scholar

[16] Nie S, Emory SR. Science, 1997, 275: 1102-1106 CrossRef Google Scholar

[17] Zhong QL, Wang XC, Zhang L, Zhang XH, Xiang J, Ren B, Tian ZQ. Acta Chim Sin, 2003, 61: 1960–1964 (in Chinese) [钟起玲, 王小聪, 章磊, 张小红, 向娟, 任斌, 田中群. 化学学报, 2003, 61: 1960–1964]. Google Scholar

[18] Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ. Nano Lett, 2013, 13: 240-247 CrossRef PubMed ADS Google Scholar

[19] Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ. J Am Chem Soc, 2010, 132: 9244-9246 CrossRef PubMed Google Scholar

[20] Linic S, Christopher P, Xin H, Marimuthu A. Acc Chem Res, 2013, 46: 1890-1899 CrossRef PubMed Google Scholar

[21] Brus L. Acc Chem Res, 2008, 41: 1742-1749 CrossRef PubMed Google Scholar

[22] Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ. Nature, 2010, 464: 392-395 CrossRef PubMed ADS Google Scholar

[23] Li CY, Dong JC, Jin X, Chen S, Panneerselvam R, Rudnev AV, Yang ZL, Li JF, Wandlowski T, Tian ZQ. J Am Chem Soc, 2015, 137: 7648-7651 CrossRef PubMed Google Scholar

[24] Xiong W, Sikdar D, Yap LW, Premaratne M, Li X, Cheng W. Nanoscale, 2015, 7: 3445-3452 CrossRef PubMed ADS Google Scholar

[25] Schütz M, Schlücker S. Phys Chem Chem Phys, 2015, 17: 24356-24360 CrossRef PubMed ADS Google Scholar

[26] Wang C, Li P, Wang J, Rong Z, Pang Y, Xu J, Dong P, Xiao R, Wang S. Nanoscale, 2015, 7: 18694-18707 CrossRef PubMed ADS Google Scholar

[27] Sun Z, Du J, Yan L, Chen S, Yang Z, Jing C. ACS Appl Mater Interfaces, 2016, 8: 3056-3062 CrossRef Google Scholar

[28] Zhang H, Wang C, Sun HL, Fu G, Chen S, Zhang YJ, Chen BH, Anema JR, Yang ZL, Li JF, Tian ZQ. Nat Commun, 2017, 8: 15447 CrossRef PubMed ADS Google Scholar

[29] Ankudze B, Pakkanen TT. Appl Surf Sci, 2018, 453: 341-349 CrossRef ADS Google Scholar

[30] Huang J, Zhu Y, Lin M, Wang Q, Zhao L, Yang Y, Yao KX, Han Y. J Am Chem Soc, 2013, 135: 8552-8561 CrossRef PubMed Google Scholar

[31] Li J, Liu J, Yang Y, Qin D. J Am Chem Soc, 2015, 137: 7039-7042 CrossRef PubMed Google Scholar

[32] Xu S, Zhao B, Xu W, Fan Y. Colloids Surfs A, 2005, 257-258: 313-317 CrossRef Google Scholar

[33] Zhang C, Guo Q, Xu M, Yuan Y, Yao J, Gu R. Acta Chim Sin, 2012, 70: 1327 CrossRef Google Scholar

[34] Xie S, Jin M, Tao J, Wang Y, Xie Z, Zhu Y, Xia Y. Chem Eur J, 2012, 18: 14974-14980 CrossRef PubMed Google Scholar

[35] Xie W, Herrmann C, Kömpe K, Haase M, Schlücker S. J Am Chem Soc, 2011, 133: 19302-19305 CrossRef PubMed Google Scholar

[36] Wu Y, Su D, Qin D. ChemNanoMat, 2017, 3: 245-251 CrossRef Google Scholar

[37] Yang Y, Liu J, Fu ZW, Qin D. J Am Chem Soc, 2015, 136: 8153-8156 CrossRef PubMed Google Scholar

[38] Zhong JH, Jin X, Meng L, Wang X, Su HS, Yang ZL, Williams CT, Ren B. Nat Nanotech, 2017, 12: 132-136 CrossRef PubMed ADS Google Scholar

[39] Wang YH, Liang MM, Zhang YJ, Chen S, Radjenovic P, Zhang H, Yang ZL, Zhou XS, Tian ZQ, Li JF. Angew Chem Int Ed, 2018, 57: 11257-11261 CrossRef PubMed Google Scholar

[40] Su HS, Zhang XG, Sun JJ, Jin X, Wu DY, Lian XB, Zhong JH, Ren B. Angew Chem Int Ed, 2018, 57: 13177-13181 CrossRef PubMed Google Scholar

[41] Wu Y, Qin D. J Am Chem Soc, 2018, 140: 8340-8349 CrossRef PubMed Google Scholar

[42] Heck KN, Janesko BG, Scuseria GE, Halas NJ, Wong MS. J Am Chem Soc, 2008, 130: 16592-16600 CrossRef PubMed Google Scholar

[43] Li JF, Fang PP, Sheng JJ, Bao F, Wu DY, Ren B, Tian ZQ. Chin J Light Scatt, 2007, 19: 358‒362 (in Chinese) [李剑锋, 方萍萍, 盛建军, 鲍芳, 吴德印, 任斌, 田中群. 光散射学报, 2007, 19: 358‒362]. Google Scholar

[44] Hu JW, Li JF, Ren B, Wu DY, Sun SG, Tian ZQ. J Phys Chem C, 2007, 111: 1105-1112 CrossRef Google Scholar

[45] Fang PP, Duan S, Lin XD, Anema JR, Li JF, Buriez O, Ding Y, Fan FR, Wu DY, Ren B, Wang ZL, Amatore C, Tian ZQ. Chem Sci, 2011, 2: 531-539 CrossRef Google Scholar

[46] Bao ZY, Lei DY, Jiang R, Liu X, Dai J, Wang J, Chan HLW, Tsang YH. Nanoscale, 2014, 6: 9063-9070 CrossRef PubMed ADS Google Scholar

[47] Spain JC. Annu Rev Microbiol, 1995, 49: 523-555 CrossRef Google Scholar

[48] Jia HW, Qiu L, Wang J. RSC Adv, 2015, 5: 40316-40323 CrossRef Google Scholar

[49] van Schrojenstein Lantman EM, Deckert-Gaudig T, Mank AJG, Deckert V, Weckhuysen BM. Nat Nanotech, 2012, 7: 583-586 CrossRef PubMed ADS Google Scholar

[50] Joseph V, Engelbrekt C, Zhang J, Gernert U, Ulstrup J, Kneipp J. Angew Chem Int Ed, 2012, 51: 7592-7596 CrossRef PubMed Google Scholar

[51] Zhang H, Zhang XG, Wei J, Wang C, Chen S, Sun HL, Wang YH, Chen BH, Yang ZL, Wu DY, Li JF, Tian ZQ. J Am Chem Soc, 2017, 139: 10339-10346 CrossRef PubMed Google Scholar

[52] Zhang Z, Gernert U, Gerhardt RF, Höhn EM, Belder D, Kneipp J. ACS Catal, 2018, 8: 2443-2449 CrossRef Google Scholar

[53] Xie W, Grzeschik R, Schlücker S. Angew Chem Int Ed, 2016, 55: 13729-13733 CrossRef PubMed Google Scholar

[54] Linic S, Christopher P, Ingram DB. Nat Mater, 2011, 10: 911-921 CrossRef PubMed ADS Google Scholar

[55] Zhou L, Swearer DF, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter EA, Nordlander P, Halas NJ. Science, 2018, 362: 69-72 CrossRef PubMed ADS Google Scholar

[56] König M, Radojcic A, Schlücker S, Xie W. J Raman Spectrosc, 2016, 47: 1024-1028 CrossRef ADS Google Scholar

[57] Xie W, Schlücker S. Nat Commun, 2015, 6: 7570 CrossRef PubMed ADS Google Scholar

[58] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269-271 CrossRef PubMed Google Scholar

[59] Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Adv Mater, 2012, 24: 229-251 CrossRef PubMed Google Scholar

[60] Hu X, Wang T, Wang L, Dong S. J Phys Chem C, 2007, 111: 6962-6969 CrossRef Google Scholar

[61] Zhao L, Huang Y, Wu D, Ren B. Acta Chim Sin, 2014, 72: 1125 CrossRef Google Scholar

[62] Xu P, Kang L, Mack NH, Schanze KS, Han X, Wang HL. Sci Rep, 2013, 3: 2997 CrossRef PubMed ADS Google Scholar

[63] Kang L, Xu P, Zhang B, Tsai H, Han X, Wang HL. Chem Commun, 2013, 49: 3389-3391 CrossRef PubMed Google Scholar

[64] Huang YF, Zhang M, Zhao LB, Feng JM, Wu DY, Ren B, Tian ZQ. Angew Chem, 2014, 126: 2385-2389 CrossRef Google Scholar

[65] Zhao LB, Zhang M, Huang YF, Williams CT, Wu DY, Ren B, Tian ZQ. J Phys Chem Lett, 2014, 5: 1259-1266 CrossRef PubMed Google Scholar

[66] Sun M, Huang Y, Xia L, Chen X, Xu H. J Phys Chem C, 2011, 115: 9629-9636 CrossRef Google Scholar

[67] Wong MS, Alvarez PJJ, Fang Y, Akçin N, Nutt MO, Miller JT, Heck KN. J Chem Technol Biotechnol, 2010, 84: 158-166 CrossRef Google Scholar

[68] Nutt MO, Heck KN, Alvarez P, Wong MS. Appl Catal B-Environ, 2006, 69: 115-125 CrossRef Google Scholar

[69] Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov J K. J Catal, 2004, 223: 232-235 CrossRef Google Scholar

[70] Ding Y, Chen M. MRS Bull, 2009, 34: 569-576 CrossRef Google Scholar

[71] Yang JL, Xu J, Ren H, Sun L, Xu QC, Zhang H, Li JF, Tian ZQ. Nanoscale, 2017, 9: 6254-6258 CrossRef PubMed Google Scholar

[72] Cai Q, Lu S, Liao F, Li Y, Ma S, Shao M. Nanoscale, 2014, 6: 8117-8123 CrossRef PubMed ADS Google Scholar

[73] Wu Y, Wu B, Tang X. Chin J Chem Phys, 2017, 30: 166-172 CrossRef ADS Google Scholar

[74] Cao Q, Liu X, Yuan K, Yu J, Liu Q, Delaunay JJ, Che R. Appl Catal B-Environ, 2017, 201: 607-616 CrossRef Google Scholar

[75] Qin S, Cai W, Tang X, Yang L. Analyst, 2014, 139: 5509-5515 CrossRef PubMed ADS Google Scholar

[76] Boerigter C, Campana R, Morabito M, Linic S. Nat Commun, 2016, 7: 10545 CrossRef PubMed ADS Google Scholar

  • Figure 1

    (a) Schematic illustration of the assembling process of Au-Au bifunctional superstructures. (b) Transmission electron microscopic (TEM) and (c) scanning electron microscopic (SEM) images of Au-Au superstructures [2] (color online).

  • Figure 2

    (a) Schematic illustration of electrostatic self-assembling of Au-PtFe core-satellite nanostructures. (b) SEM image of Au-PtFe nanostructures. Inset is the TEM image [28]. (c) Schematics of the assembling process of Fe3O4@Ag core (modified with PEI) and Au@Ag satellites. (d) SEM images of Fe3O4@Ag-Au@Ag nanocomposites [26] (color online).

  • Figure 3

    (a) Schematics of preparation of Au-Pt-Au hybrid [35]. (b) TEM image of Au-Pt-Au hybrid [35]. (c) Schematic illustration of proposed pathways for the selective deposition of Pd and Ag atoms on Ag nanocubes. (d) TEM image and (e) elemental mapping of Ag-AgPd nanocubes [31]. (f) Synthesis process and (g) SEM image of SiO2/Au shell-Pd island [42] (color online).

  • Figure 4

    SERS spectra of the reduction of 4-NTP to 4-ATP by adding different volume of NaBH4 [35].

  • Figure 5

    Schematic illustration of the interfacial effects of the hydrogenation of 4-NTP [51] (color online).

  • Figure 6

    (a) The microfluidic reactor chip used for label-free SERS monitoring of the reduction of 4-NTP on Au-Pt-Au bifunctional nanoparticles (NPs) in aqueous NaBH4 solutions. Temperature-dependent kinetic SERS monitoring of the reduction of 4-NTP at pH 12.7 (b) and pH 14 (c) [53] (color online).

  • Figure 7

    Schematic illustration of the excitation of hot electrons for the reduction of 4-NTP to 4-ATP [57] (color online).

  • Figure 8

    (a) Raman spectra of Au(111)/4-ATP/Au NP (top) and Au(111)/4-ATP/Au@SiO2 NP (bottom) junctions. (b) Raman spectra of Ag film/4-ATP/Au NP and Au film/4-ATP/Ag NP junctions recorded in N2 atmosphere and in air [64] (color online).

  • Figure 9

    Proposed surface intermediates of 1,1-DCE and H2 under reactive conditions on Au-Pd SERS substrate based on spectroscopic results [42] (color online).

  • Figure 10

    (a) SHINERS detection of CO oxidation over metal nanocatalysts. (b) SHINERS spectra of CO oxidation over the PtFe nanoalloy and the Pt monometallic nanocatalyst at 30°C. (c) SHINERS spectra of CO oxidation over Pd nanocatalysts with a gas ratio of CO/O2=1/10 at different temperatures [28] (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1