logo

SCIENTIA SINICA Chimica, Volume 49, Issue 5: 662-671(2019) https://doi.org/10.1360/N032018-00239

The recent developments and applications of chiral covalent organic frameworks

More info
  • ReceivedOct 31, 2018
  • AcceptedDec 7, 2018
  • PublishedJan 16, 2019

Abstract

Covalent organic frameworks (COFs) are a class of ordered porous organic material formed via the covalent bonding among various organic monomers. Recently, studies of chiral COFs have attracted great attention because chirality plays an important role in medicine, pharmacy and agriculture, and chiral COFs possess many fascinating characteristics like inherent porosity, tunable pore size, structural periodicity, high stability and reusability. Ascribed to the great advantages of chiral COFs, they demonstrate many potential applications in asymmetrical catalysis, asymmetrical separation and so on. One strategy to construct chiral COFs is using multifarious chiral building blocks to directly prepare chiral COFs. Various chiral COFs structures can be designed via choosing different building blocks and adding functional groups to monomers. An alternative strategy to construct chiral COFs is to incorporate metal particles or organic species into COFs via post-synthetic modifications.


Funded by

国家重点基础研究发展规划(2009CB724100)

国家自然科学基金(21601093)


References

[1] Beuerle F, Gole B. Angew Chem Int Ed, 2018, 57: 4850-4878 CrossRef PubMed Google Scholar

[2] Bisbey RP, Dichtel WR. ACS Cent Sci, 2017, 3: 533-543 CrossRef Google Scholar

[3] DeBlase CR, Dichtel WR. Macromolecules, 2016, 49: 5297-5305 CrossRef ADS Google Scholar

[4] Fang Q, Zhuang Z, Gu S, Kaspar RB, Zheng J, Wang J, Qiu S, Yan Y. Nat Commun, 2014, 5: 4503 CrossRef PubMed ADS Google Scholar

[5] Huang N, Zhai L, Xu H, Jiang D. J Am Chem Soc, 2017, 139: 2428-2434 CrossRef PubMed Google Scholar

[6] Tylianakis E, Klontzas E, Froudakis GE. Nanoscale, 2011, 3: 856-869 CrossRef PubMed ADS Google Scholar

[7] Lu S, Hu Y, Wan S, McCaffrey R, Jin Y, Gu H, Zhang W. J Am Chem Soc, 2017, 139: 17082-17088 CrossRef PubMed Google Scholar

[8] Sun Q, Fu CW, Aguila B, Perman J, Wang S, Huang HY, Xiao FS, Ma S. J Am Chem Soc, 2018, 140: 984-992 CrossRef PubMed Google Scholar

[9] Matsumoto M, Valentino L, Stiehl GM, Balch HB, Corcos AR, Wang F, Ralph DC, Mariñas BJ, Dichtel WR. Chem, 2018, 4: 308-317 CrossRef Google Scholar

[10] Ding SY, Wang W. Chem Soc Rev, 2013, 42: 548-568 CrossRef PubMed Google Scholar

[11] Das G, Biswal BP, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Heine T, Verma S, Banerjee R. Chem Sci, 2015, 6: 3931-3939 CrossRef PubMed Google Scholar

[12] Sun Q, Aguila B, Earl LD, Abney CW, Wojtas L, Thallapally PK, Ma S. Adv Mater, 2018, 30: 1705479 CrossRef PubMed Google Scholar

[13] Wang C, Wang Y, Ge R, Song X, Xing X, Jiang Q, Lu H, Hao C, Guo X, Gao Y, Jiang D. Chem Eur J, 2018, 24: 585-589 CrossRef PubMed Google Scholar

[14] Chen L, Furukawa K, Gao J, Nagai A, Nakamura T, Dong Y, Jiang D. J Am Chem Soc, 2014, 136: 9806-9809 CrossRef PubMed Google Scholar

[15] Wei PF, Qi MZ, Wang ZP, Ding SY, Yu W, Liu Q, Wang LK, Wang HZ, An WK, Wang W. J Am Chem Soc, 2018, 140: 4623-4631 CrossRef PubMed Google Scholar

[16] Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D. J Am Chem Soc, 2013, 135: 17310-17313 CrossRef PubMed Google Scholar

[17] Dogru M, Bein T. Chem Commun, 2014, 50: 5531-5546 CrossRef PubMed Google Scholar

[18] Ma H, Ren H, Meng S, Yan Z, Zhao H, Sun F, Zhu G. Chem Commun, 2013, 49: 9773-9775 CrossRef PubMed Google Scholar

[19] DeBlase CR, Silberstein KE, Truong TT, Abruña HD, Dichtel WR. J Am Chem Soc, 2013, 135: 16821-16824 CrossRef PubMed Google Scholar

[20] Wang S, Wang Q, Shao P, Han Y, Gao X, Ma L, Yuan S, Ma X, Zhou J, Feng X, Wang B. J Am Chem Soc, 2017, 139: 4258-4261 CrossRef PubMed Google Scholar

[21] Diercks CS, Lin S, Kornienko N, Kapustin EA, Nichols EM, Zhu C, Zhao Y, Chang CJ, Yaghi OM. J Am Chem Soc, 2018, 140: 1116-1122 CrossRef PubMed Google Scholar

[22] Liu G, Sheng J, Zhao Y. Sci China Chem, 2017, 60: 1015-1022 CrossRef Google Scholar

[23] Huang N, Wang P, Jiang D. Nat Rev Mater, 2016, 1: 16068 CrossRef ADS Google Scholar

[24] El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, Côté AP, Taylor RE, O’Keeffe M, Yaghi OM. Science, 2007, 316: 268-272 CrossRef PubMed ADS Google Scholar

[25] Qian HL, Yang CX, Wang WL, Yang C, Yan XP. J Chromatogr A, 2018, 1542: 1-18 CrossRef PubMed Google Scholar

[26] Ma HC, Kan JL, Chen GJ, Chen CX, Dong YB. Chem Mater, 2017, 29: 6518-6524 CrossRef Google Scholar

[27] Ma L, Wang S, Feng X, Wang B. Chin Chem Lett, 2016, 27: 1383-1394 CrossRef Google Scholar

[28] Biswal BP, Kandambeth S, Chandra S, Shinde DB, Bera S, Karak S, Garai B, Kharul UK, Banerjee R. J Mater Chem A, 2015, 3: 23664-23669 CrossRef Google Scholar

[29] Ding SY, Gao J, Wang Q, Zhang Y, Song WG, Su CY, Wang W. J Am Chem Soc, 2011, 133: 19816-19822 CrossRef PubMed Google Scholar

[30] Segura JL, Mancheño MJ, Zamora F. Chem Soc Rev, 2016, 45: 5635-5671 CrossRef PubMed Google Scholar

[31] Das S, Heasman P, Ben T, Qiu S. Chem Rev, 2017, 117: 1515-1563 CrossRef PubMed Google Scholar

[32] Diercks CS, Yaghi OM. Science, 2017, 355: eaal1585 CrossRef PubMed Google Scholar

[33] Yang CX, Liu C, Cao YM, Yan XP. Chem Commun, 2015, 51: 12254-12257 CrossRef PubMed Google Scholar

[34] Liu LH, Yang CX, Yan XP. J Chromatogr A, 2017, 1479: 137-144 CrossRef PubMed Google Scholar

[35] Liu GF, Zhang D, Feng CL. Angew Chem Int Ed, 2014, 53: 7789-7793 CrossRef PubMed Google Scholar

[36] Xu H, Gao J, Jiang D. Nat Chem, 2015, 7: 905-912 CrossRef PubMed ADS Google Scholar

[37] Xu HS, Ding SY, An WK, Wu H, Wang W. J Am Chem Soc, 2016, 138: 11489-11492 CrossRef PubMed Google Scholar

[38] Zhang J, Han X, Wu X, Liu Y, Cui Y. J Am Chem Soc, 2017, 139: 8277-8285 CrossRef PubMed Google Scholar

[39] Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. J Am Chem Soc, 2016, 138: 12332-12335 CrossRef PubMed Google Scholar

[40] Han X, Xia Q, Huang J, Liu Y, Tan C, Cui Y. J Am Chem Soc, 2017, 139: 8693-8697 CrossRef PubMed Google Scholar

[41] Han X, Zhang J, Huang JJ, Wu XW, Yuan DQ, Cui Y. Nat Commun, 2018, 9: 1–75. Google Scholar

[42] Qian HL, Yang CX, Yan XP. Nat Commun, 2016, 7: 12104 CrossRef PubMed ADS Google Scholar

[43] Zhang SN, Zheng YL, An HD, Aguila B, Yang CX, Dong YY, Xie W, Cheng P, Zhang ZJ, Chen Y, Ma SQ. Angew Chem Int Ed, 2018, 57: 1–7. Google Scholar

[44] Zhang K, Cai SL, Yan YL, He ZH, Lin HM, Huang XL, Zheng SR, Fan J, Zhang WG. J Chromatogr A, 2017, 1519: 100-109 CrossRef PubMed Google Scholar

[45] Han X, Huang J, Yuan C, Liu Y, Cui Y. J Am Chem Soc, 2018, 140: 892-895 CrossRef PubMed Google Scholar

[46] Waller PJ, Gándara F, Yaghi OM. Acc Chem Res, 2015, 48: 3053-3063 CrossRef PubMed Google Scholar

[47] Pachfule P, Kandambeth S, Díaz Díaz D, Banerjee R. Chem Commun, 2014, 50: 3169-3172 CrossRef PubMed Google Scholar

[48] Xie SM, Yuan LM. J Sep Sci, 2017, 40: 124-137 CrossRef PubMed Google Scholar

[49] Zhang SY, Yang CX, Shi W, Yan XP, Cheng P, Wojtas L, Zaworotko MJ. Chem, 2017, 3: 281-289 CrossRef Google Scholar

[50] Han Q, Qi B, Ren W, He C, Niu J, Duan C. Nat Commun, 2015, 6: 10007 CrossRef PubMed ADS Google Scholar

[51] Jacobs T, Clowes R, Cooper AI, Hardie MJ. Angew Chem Int Ed, 2012, 51: 5192-5195 CrossRef PubMed Google Scholar

[52] Das S, Xu S, Ben T, Qiu S. Angew Chem, 2018, 130: 8765-8769 CrossRef Google Scholar

[53] Shen J, Okamoto Y. Chem Rev, 2016, 116: 1094-1138 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Illustration of introducing chemical groups to improve the stability of COFs; (b) diagram of COFs; (c) a graphical representation of the synthesis of chiral COFs via the strategy of post-synthetic modification. Reprinted from Ref. [36], Copyright 2015 Springer Nature (color online).

  • Figure 2

    Illustration of synthesizing COFs via the strategy of the direct construction. Reprinted from Ref. [37], Copyright 2016 American Chemical Society (color online).

  • Figure 3

    Synthesis of chiral COFs by chiral induction. Reprinted from Ref. [41], Copyright 2018 Macmillan Publishers Ltd (color online).

  • Figure 4

    Schematic respresentation for the synthesis of chiral COFs and their bound capillary columns. Reprinted from Ref. [42], Copyright 2016 Macmillan Publishers Ltd (color online).

  • Figure 5

    Illumination of Lysozyme COFs based CSPs for chiral separation. Reprinted from Ref. [43], Copyright 2018 John Wiley and Sons (color online).

  • Figure 6

    Synthesis of three dimensional chiral COFs. Reprinted from Ref. [45], Copyright 2018, American Chemical Society (color online).

  • Table 1   Summary of published Chiral COFs

    材料

    化学反应式

    参考文献

    Pd@CCOF-MPC (2)

    [26]

    [(S)-Py]x-TPB-DMTP-COFs

    [36]

    LZU-76

    [37]

    DMTA-TPB 1/n

    [38]

    CCOF1

    [39]

    CCOFs 3/4

    [40]

    CCOF-TpTab-Cu

    [41]

    CTpPa-1

    [42]

    BiomoleculeÌCOF 1

    [43]

    BtaMth COF

    [44]

    (R,R)-CCOF5

    [45]

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1