logo

SCIENTIA SINICA Chimica, Volume 49, Issue 5: 766-775(2019) https://doi.org/10.1360/N032018-00242

Smart DNA hydrogels for biosensing applications

Yanhui Bi1,†, Cuiyan Han1,†, Weiwei Guo1,2,*
More info
  • ReceivedNov 3, 2018
  • AcceptedDec 24, 2018
  • PublishedFeb 28, 2019

Abstract

As a novel kind of biomacromolecular soft material, DNA hydrogel has become one of the hot topics in multidisciplinary researches. Taking advantages of the programmability and abundant functional motifs of DNA based materials, smart DNA hydrogels can be developed with high precision and controllability through reasonable sequence designs and post-modifications. By encoding with different functional DNA structures, such as the molecular-recognition DNA structures and the catalytic DNA structures, smart DNA hydrogel can perform different functions, such as the target-responsive and signal-amplification functions. DNA hydrogels also exhibit good biocompatibility and degradability. Therefore, smart DNA hydrogels hold great promise in biomedical applications, especially in biosensing. In this mini-review, we discuss the different types of smart DNA hydrogels and summarize their biosensing applications. The development prospect of smart DNA hydrogels is also discussed.


Funded by

国家自然科学基金(21505078,21874076)

中央高校基本科研业务费

天津市自然科学基金(18JCZDJC37800)


References

[1] Watson JD, Crick FHC. Nature, 1953, 171: 737-738 CrossRef ADS Google Scholar

[2] Seeman NC. J Theor Biol, 1982, 99: 237-247 CrossRef Google Scholar

[3] Seeman NC. Nature, 2003, 421: 427-431 CrossRef PubMed ADS Google Scholar

[4] Yang D, Hartman MR, Derrien TL, Hamada S, An D, Yancey KG, Cheng R, Ma M, Luo D. Acc Chem Res, 2014, 47: 1902-1911 CrossRef PubMed Google Scholar

[5] Zhang YS, Khademhosseini A. Science, 2017, 356: eaaf3627 CrossRef PubMed Google Scholar

[6] Shigemitsu H, Hamachi I. Acc Chem Res, 2017, 50: 740-750 CrossRef PubMed Google Scholar

[7] Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. Nat Mater, 2006, 5: 797-801 CrossRef PubMed ADS Google Scholar

[8] Xing Y, Cheng E, Yang Y, Chen P, Zhang T, Sun Y, Yang Z, Liu D. Adv Mater, 2011, 23: 1117-1121 CrossRef PubMed Google Scholar

[9] Cheng E, Xing Y, Chen P, Yang Y, Sun Y, Zhou D, Xu L, Fan Q, Liu D. Angew Chem Int Ed, 2009, 48: 7660-7663 CrossRef PubMed Google Scholar

[10] Nagahara S, Matsuda T. Polym Gels Networks, 1996, 4: 111-127 CrossRef Google Scholar

[11] Wang F, Lu CH, Willner I. Chem Rev, 2014, 114: 2881-2941 CrossRef PubMed Google Scholar

[12] Okay O. J Polym Sci B Polym Phys, 2011, 49: 551-556 CrossRef ADS Google Scholar

[13] Li J, Mo L, Lu CH, Fu T, Yang HH, Tan W. Chem Soc Rev, 2016, 45: 1410-1431 CrossRef PubMed Google Scholar

[14] Kahn JS, Hu Y, Willner I. Acc Chem Res, 2017, 50: 680-690 CrossRef Google Scholar

[15] Wang D, Hu Y, Liu P, Luo D. Acc Chem Res, 2017, 50: 733-739 CrossRef PubMed Google Scholar

[16] Guo W, Lu CH, Qi XJ, Orbach R, Fadeev M, Yang HH, Willner I. Angew Chem Int Ed, 2014, 53: 10134-10138 CrossRef PubMed Google Scholar

[17] Guo W, Lu CH, Orbach R, Wang F, Qi XJ, Cecconello A, Seliktar D, Willner I. Adv Mater, 2015, 27: 73-78 CrossRef PubMed Google Scholar

[18] Guo W, Qi XJ, Orbach R, Lu CH, Freage L, Mironi-Harpaz I, Seliktar D, Yang HH, Willner I. Chem Commun, 2014, 50: 4065-4068 CrossRef PubMed Google Scholar

[19] Lu CH, Qi XJ, Orbach R, Yang HH, Mironi-Harpaz I, Seliktar D, Willner I. Nano Lett, 2013, 13: 1298-1302 CrossRef PubMed ADS Google Scholar

[20] Peng L, You M, Yuan Q, Wu C, Han D, Chen Y, Zhong Z, Xue J, Tan W. J Am Chem Soc, 2012, 134: 12302-12307 CrossRef PubMed Google Scholar

[21] Yang H, Liu H, Kang H, Tan W. J Am Chem Soc, 2008, 130: 6320-6321 CrossRef PubMed Google Scholar

[22] Lu CH, Guo W, Hu Y, Qi XJ, Willner I. J Am Chem Soc, 2015, 137: 15723-15731 CrossRef PubMed Google Scholar

[23] Joseph KA, Dave N, Liu J. ACS Appl Mater Interfaces, 2011, 3: 733-739 CrossRef PubMed Google Scholar

[24] Zhu Z, Guan Z, Jia S, Lei Z, Lin S, Zhang H, Ma Y, Tian ZQ, Yang CJ. Angew Chem Int Ed, 2014, 10: 12503-12507 CrossRef PubMed Google Scholar

[25] Lyu D, Chen S, Guo W. Small, 2018, 14: 1704039 CrossRef PubMed Google Scholar

[26] Dave N, Chan MY, Huang PJJ, Smith BD, Liu J. J Am Chem Soc, 2010, 132: 12668-12673 CrossRef PubMed Google Scholar

[27] Cangialosi A, Yoon CK, Liu J, Huang Q, Guo J, Nguyen TD, Gracias DH, Schulman R. Science, 2017, 357: 1126-1130 CrossRef PubMed ADS Google Scholar

[28] Li C, Faulkner-Jones A, Dun AR, Jin J, Chen P, Xing Y, Yang Z, Li Z, Shu W, Liu D, Duncan RR. Angew Chem Int Ed, 2015, 54: 3957-3961 CrossRef PubMed Google Scholar

[29] Ren J, Hu Y, Lu CH, Guo W, Aleman-Garcia MA, Ricci F, Willner I. Chem Sci, 2015, 6: 4190-4195 CrossRef PubMed Google Scholar

[30] Hu Y, Lu CH, Guo W, Aleman-Garcia MA, Ren J, Willner I. Adv Funct Mater, 2015, 25: 6867-6874 CrossRef Google Scholar

[31] Wu Y, Wang D, Willner I, Tian Y, Jiang L. Angew Chem Int Ed, 2018, 57: 7790-7794 CrossRef PubMed Google Scholar

[32] Kang H, Trondoli AC, Zhu G, Chen Y, Chang YJ, Liu H, Huang YF, Zhang X, Tan W. ACS Nano, 2011, 5: 5094-5099 CrossRef PubMed Google Scholar

[33] Kang H, Liu H, Zhang X, Yan J, Zhu Z, Peng L, Yang H, Kim Y, Tan W. Langmuir, 2010, 27: 399-408 CrossRef PubMed Google Scholar

[34] Wang C, Fadeev M, Zhang J, Vázquez-González M, Davidson-Rozenfeld G, Tian H, Willner I. Chem Sci, 2018, 9: 7145-7152 CrossRef PubMed Google Scholar

[35] Liu X, Zhang J, Fadeev M, Li Z, Wulf V, Tian H, Willner I. Chem Sci, 2019, 389: doi: 10.1039/c8sc04292f CrossRef Google Scholar

[36] Zhang J, Riskin M, Freeman R, Tel-Vered R, Balogh D, Tian H, Willner I. ACS Nano, 2011, 5: 5936-5944 CrossRef PubMed Google Scholar

[37] Li Z, Davidson-Rozenfeld G, Vázquez-González M, Fadeev M, Zhang J, Tian H, Willner I. J Am Chem Soc, 2018, 140: 17691-17701 CrossRef PubMed Google Scholar

[38] Ma X, Yang Z, Wang Y, Zhang G, Shao Y, Jia H, Cao T, Wang R, Liu D. ACS Appl Mater Interfaces, 2017, 9: 1995-2000 CrossRef Google Scholar

[39] Yao C, Yuan Y, Yang D. ACS Appl Bio Mater, 2018, 1: 2012-2020 CrossRef Google Scholar

[40] Yin BC, Ye BC, Wang H, Zhu Z, Tan W. Chem Commun, 2012, 48: 1248-1250 CrossRef PubMed Google Scholar

[41] Ma Y, Mao Y, Huang D, He Z, Yan J, Tian T, Shi Y, Song Y, Li X, Zhu Z, Zhou L, Yang CJ. Lab Chip, 2016, 16: 3097-3104 CrossRef PubMed Google Scholar

[42] Lin H, Zou Y, Huang Y, Chen J, Zhang WY, Zhuang Z, Jenkins G, Yang CJ. Chem Commun, 2011, 47: 9312-9314 CrossRef PubMed Google Scholar

[43] Huang Y, Ma Y, Chen Y, Wu X, Fang L, Zhu Z, Yang CJ. Anal Chem, 2014, 86: 11434-11439 CrossRef PubMed Google Scholar

[44] Huang Y, Fang L, Zhu Z, Ma Y, Zhou L, Chen X, Xu D, Yang C. Biosens Bioelectron, 2016, 85: 496-502 CrossRef PubMed Google Scholar

[45] Mao Y, Li J, Yan J, Ma Y, Song Y, Tian T, Liu X, Zhu Z, Zhou L, Yang C. Chem Commun, 2017, 53: 6375-6378 CrossRef PubMed Google Scholar

[46] Wang J, Chao J, Liu H, Su S, Wang L, Huang W, Willner I, Fan C. Angew Chem Int Ed, 2017, 56: 2171-2175 CrossRef Google Scholar

[47] He Y, Yang X, Yuan R, Chai Y. Anal Chem, 2017, 89: 8538-8544 CrossRef PubMed Google Scholar

[48] Li C, Rowland MJ, Shao Y, Cao T, Chen C, Jia H, Zhou X, Yang Z, Scherman OA, Liu D. Adv Mater, 2015, 27: 3298-3304 CrossRef PubMed Google Scholar

[49] Zhu Z, Wu C, Liu H, Zou Y, Zhang X, Kang H, Yang CJ, Tan W. Angew Chem Int Ed, 2010, 49: 1052-1056 CrossRef PubMed Google Scholar

[50] Yan L, Zhu Z, Zou Y, Huang Y, Liu D, Jia S, Xu D, Wu M, Zhou Y, Zhou S, Yang CJ. J Am Chem Soc, 2013, 135: 3748-3751 CrossRef PubMed Google Scholar

[51] Zhang L, Lei J, Liu L, Li C, Ju H. Anal Chem, 2013, 85: 11077-11082 CrossRef PubMed Google Scholar

[52] Kahn JS, Trifonov A, Cecconello A, Guo W, Fan C, Willner I. Nano Lett, 2015, 15: 7773-7778 CrossRef PubMed ADS Google Scholar

[53] Mao X, Chen G, Wang Z, Zhang Y, Zhu X, Li G. Chem Sci, 2018, 9: 811-818 CrossRef PubMed Google Scholar

[54] Chang Y, Li M, Wu Z, Zhuo Y, Chai Y, Xiao Q, Yuan R. Anal Chem, 2018, 90: 8241-8247 CrossRef PubMed Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1