SCIENTIA SINICA Chimica, Volume 49 , Issue 5 : 741-751(2019) https://doi.org/10.1360/N032018-00252

Progress in DFT study on 3d transition metal oxide/hydroxide electrocatalyst for oxygen evolution

More info
  • ReceivedNov 17, 2018
  • AcceptedJan 29, 2019
  • PublishedApr 1, 2019


Oxygen evolution reaction (OER) is a key reaction in electrochemical energy conversion and storage devices such as water electrolyzer and rechargeable metal-air battery. The design and application of efficient OER electrocatalysts rely largely on understanding of the mechanism and structure-activity relationship at the atomic scale. In this article, we briefly overview recent progress made in density functional theory (DFT) studies on 3d transition metal (e.g., Mn, Fe, Co and Ni) oxide/hydroxide electrocatalysts for the OER. Using DFT correlated by on-site coulomb interactions (DFT+U), much insight can be gained in elucidating the effect of crystal structure, element doping, defect formation and substrate loading on the catalytic activity. Furthermore, representative examples and discussions are provided on the efficient strategies to improve the performance of 3d transition metal-based electrocatalysts.

Funded by





[1] Zhang D, Zhang CZ, Mu DB, Wu BR, Wu F. Prog Chem, 2012, 24: 2472–2482 (in Chinese) [张栋, 张存中, 穆道斌, 吴伯荣, 吴锋. 化学进展, 2012, 24: 2472–2482]. Google Scholar

[2] Xin S, Chang ZW, Zhang XB, Guo YG. Natl Sci Rev, 2017, 4: 54–70. Google Scholar

[3] Cheng FY, Chen J. Acta Chim Sin, 2013, 71: 473-477 (in Chinese) CrossRef Google Scholar

[4] Peng LS, Wei ZD. Prog Chem, 2018, 30: 14–28 (in Chinese) [彭立山, 魏子栋. 化学进展, 2018, 30: 14–28]. Google Scholar

[5] Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer KJJ. Catal Today, 2016, 262: 170-180 CrossRef Google Scholar

[6] Fan B, Guo YG, Wan LJ. Prog Chem, 2010, 22: 852–860 (in Chinese) [樊博, 郭玉国, 万立骏. 化学进展, 2010, 22: 852–860]. Google Scholar

[7] Huynh M, Bediako DK, Nocera DG. J Am Chem Soc, 2014, 136: 6002-6010 CrossRef PubMed Google Scholar

[8] Ramírez A, Hillebrand P, Stellmach D, May MM, Bogdanoff P, Fiechter S. J Phys Chem C, 2014, 118: 14073-14081 CrossRef Google Scholar

[9] Cheng FY, Li C, Han XP, Chen CC, Chen J. Bull Natl Nat Sci Found Chin, 2015, 29: 382–385 (in Chinese) [程方益, 李淳, 韩晓鹏, 陈程成, 陈军. 中国科学基金, 2015, 29: 382–385]. Google Scholar

[10] Hu Y, Zhang T, Cheng F, Zhao Q, Han X, Chen J. Angew Chem Int Ed, 2015, 54: 4338-4343 CrossRef PubMed Google Scholar

[11] Sivula K, Le Formal F, Grätzel M. ChemSusChem, 2011, 4: 432-449 CrossRef PubMed Google Scholar

[12] Pu A, Deng J, Li M, Gao J, Zhang H, Hao Y, Zhong J, Sun X. J Mater Chem A, 2014, 2: 2491-2497 CrossRef Google Scholar

[13] Louie MW, Bell AT. J Am Chem Soc, 2013, 135: 12329-12337 CrossRef PubMed Google Scholar

[14] Chen X, Lei KX, Sun HM, Cheng FY, Chen J. Energ Stor Sci Technol, 2017, 6: 904–923 (in Chinese) [陈祥, 雷凯翔, 孙洪明, 程方益, 陈军. 储能科学与技术, 2017, 6: 904–923]. Google Scholar

[15] Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, Dai L. Angew Chem Int Ed, 2016, 55: 5277-5281 CrossRef PubMed Google Scholar

[16] Chen D, Dong CL, Zou Y, Su D, Huang YC, Tao L, Dou S, Shen S, Wang S. Nanoscale, 2017, 9: 11969-11975 CrossRef PubMed Google Scholar

[17] Liu PF, Yang S, Zheng LR, Zhang B, Yang HG. J Mater Chem A, 2016, 4: 9578-9584 CrossRef Google Scholar

[18] Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW. J Am Chem Soc, 2015, 137: 3638-3648 CrossRef PubMed Google Scholar

[19] Wu G, Chen W, Zheng X, He D, Luo Y, Wang X, Yang J, Wu Y, Yan W, Zhuang Z, Hong X, Li Y. Nano Energy, 2017, 38: 167-174 CrossRef Google Scholar

[20] Dionigi F, Strasser P. Adv Energy Mater, 2016, 6: 1600621-1600640 CrossRef Google Scholar

[21] Enman LJ, Burke MS, Batchellor AS, Boettcher SW. ACS Catal, 2016, 6: 2416-2423 CrossRef Google Scholar

[22] Morales-Guio CG, Liardet L, Hu X. J Am Chem Soc, 2016, 138: 8946-8957 CrossRef PubMed Google Scholar

[23] Hohenberg P, Kohn W. Phys Rev, 1964, 136: B864-B871 CrossRef ADS Google Scholar

[24] Kohn W, Sham LJ. Phys Rev, 1965, 140: A1133-A1138 CrossRef ADS Google Scholar

[25] Bockris JOM, Khan SUM. Quantum Electrochemistry (in Chinese). Harbin: Harbin Institute of Technology Press, 1988 [Bockris JOM, Khan SUM. 量子电化学. 哈尔滨: 哈尔滨工业大学出版社, 1988]. Google Scholar

[26] Li L, Wei ZD. J Electrochem, 2014, 20: 307–315 (in Chinese) [李莉, 魏子栋. 电化学, 2014, 20: 307–315]. Google Scholar

[27] Chen Z, Mao Y, Chen J, Wang H, Li Y, Hu P. ACS Catal, 2017, 7: 4281-4290 CrossRef Google Scholar

[28] Zasada F, Piskorz W, Cristol S, Paul JF, Kotarba A, Sojka Z. J Phys Chem C, 2010, 114: 22245-22253 CrossRef Google Scholar

[29] Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H. J Phys Chem B, 2004, 108: 17886-17892 CrossRef Google Scholar

[30] Fan XT, Huang JX, Fan QY, Wen XJ, Yue HL, Cheng J. Sci Sin Chim, 2017, 48: 9–17 (in Chinese) [范雪婷, 黄剑兴, 樊祺源, 文小健, 岳会利, 程俊. 中国科学: 化学, 2018, 48: 9–17]. Google Scholar

[31] García-Mota M, Bajdich M, Viswanathan V, Vojvodic A, Bell AT, Nørskov JK. J Phys Chem C, 2012, 116: 21077-21082 CrossRef Google Scholar

[32] Huang X, Ramadugu SK, Mason SE. J Phys Chem C, 2016, 120: 4919-4930 CrossRef Google Scholar

[33] Li X, Yang J. Nat Sci Rev, 2016, 3: 365-381 CrossRef Google Scholar

[34] Robinson DM, Go YB, Mui M, Gardner G, Zhang Z, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes GC. J Am Chem Soc, 2013, 135: 3494-3501 CrossRef PubMed Google Scholar

[35] Bode H, Dehmelt K, Witte J. Electrochim Acta, 1966, 11: 1079-1087 CrossRef Google Scholar

[36] Li YF, Selloni A. J Phys Chem Lett, 2014, 5: 3981-3985 CrossRef PubMed Google Scholar

[37] Van der Ven A, Morgan D, Meng YS, Ceder G. J Electrochem Soc, 2006, 153: A210-A215 CrossRef Google Scholar

[38] Li YF, Liu ZP. J Am Chem Soc, 2018, 140: 1783-1792 CrossRef PubMed Google Scholar

[39] Chen J, Selloni A. Phys Rev B, 2012, 85: 085306 CrossRef ADS arXiv Google Scholar

[40] Plaisance CP, Reuter K, van Santen RA. Faraday Discuss, 2016, 188: 199-226 CrossRef PubMed ADS Google Scholar

[41] Hashim AH, Zayed A’OH, Zain SM, Lee VS, Said SM. Appl Surf Sci, 2018, 427: 1090-1095 CrossRef ADS Google Scholar

[42] Chen J, Selloni A. J Phys Chem Lett, 2012, 3: 2808-2814 CrossRef Google Scholar

[43] Chen Z, Li G, Zheng H, Shu X, Zou J, Peng P. Appl Surf Sci, 2017, 420: 205-213 CrossRef ADS Google Scholar

[44] Selcuk S, Selloni A. J Phys Chem C, 2015, 119: 9973-9979 CrossRef Google Scholar

[45] Han S, Liu S, Yin S, Chen L, He Z. Electrochim Acta, 2016, 210: 942-949 CrossRef Google Scholar

[46] Xiang R, Tong C, Wang Y, Peng L, Nie Y, Li L, Huang X, Wei Z. Chin J Catal, 2018, 39: 1736-1745 CrossRef Google Scholar

[47] Zhu K, Liu H, Li M, Li X, Wang J, Zhu X, Yang W. J Mater Chem A, 2017, 5: 7753-7758 CrossRef Google Scholar

[48] Liang Q, Zhong L, Du C, Luo Y, Zheng Y, Li S, Yan Q. Nano Energy, 2018, 47: 257-265 CrossRef Google Scholar

[49] Liao W, Zhou G. Sci China Mater, 2017, 60: 664-673 CrossRef Google Scholar

[50] Yan Z, Sun H, Chen X, Liu H, Zhao Y, Li H, Xie W, Cheng F, Chen J. Nat Commun, 2018, 9: 2373-2381 CrossRef PubMed ADS Google Scholar

[51] Tripkovic V, Hansen HA, Vegge T. ChemSusChem, 2018, 11: 629-637 CrossRef PubMed Google Scholar

[52] Guduru RK, Icaza JC. Nanomaterials, 2016, 6: 41-59 CrossRef PubMed Google Scholar

[53] Zhang T, Cheng F, Du J, Hu Y, Chen J. Adv Energy Mater, 2015, 5: 1400654-1400662 CrossRef Google Scholar

[54] Li YF, Selloni A. ACS Catal, 2014, 4: 1148-1153 CrossRef Google Scholar

[55] Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, Cheng MJ, Sokaras D, Weng TC, Alonso-Mori R, Davis RC, Bargar JR, Nørskov JK, Nilsson A, Bell AT. J Am Chem Soc, 2015, 137: 1305-1313 CrossRef PubMed Google Scholar

[56] Butera V, Caspary Toroker M. J Phys Chem C, 2016, 120: 12344-12350 CrossRef Google Scholar

[57] Li N, Bediako DK, Hadt RG, Hayes D, Kempa TJ, von Cube F, Bell DC, Chen LX, Nocera DG. Proc Natl Acad Sci USA, 2017, 114: 1486-1491 CrossRef PubMed Google Scholar

[58] Neufeld O, Toroker MC. J Phys Chem C, 2015, 119: 5836-5847 CrossRef Google Scholar

[59] Asnavandi M, Yin Y, Li Y, Sun C, Zhao C. ACS Energy Lett, 2018, 3: 1515-1520 CrossRef Google Scholar

[60] Cheng F, Zhang T, Zhang Y, Du J, Han X, Chen J. Angew Chem Int Ed, 2013, 52: 2474-2477 CrossRef PubMed Google Scholar

[61] Li L, Feng X, Nie Y, Chen S, Shi F, Xiong K, Ding W, Qi X, Hu J, Wei Z, Wan LJ, Xia M. ACS Catal, 2015, 5: 4825-4832 CrossRef Google Scholar

[62] Du J, Zhang T, Cheng F, Chu W, Wu Z, Chen J. Inorg Chem, 2014, 53: 9106-9114 CrossRef PubMed Google Scholar

[63] Zhuang L, Jia Y, He T, Du A, Yan X, Ge L, Zhu Z, Yao X. Nano Res, 2018, 11: 3509-3518 CrossRef Google Scholar

[64] Fidelsky V, Toroker MC. J Phys Chem C, 2016, 120: 25405-25410 CrossRef Google Scholar

[65] Fidelsky V, Toroker MC. Phys Chem Chem Phys, 2017, 19: 7491-7497 CrossRef PubMed ADS Google Scholar

[66] Han X, Cheng F, Zhang T, Yang J, Hu Y, Chen J. Adv Mater, 2014, 26: 2047-2051 CrossRef PubMed Google Scholar

[67] Zhang X, Zhang X, Wang XG, Xie Z, Zhou Z. J Mater Chem A, 2016, 4: 9390-9393 CrossRef Google Scholar

[68] Ma T, Li C, Chen X, Cheng F, Chen J. Inorg Chem Front, 2017, 4: 1628-1633 CrossRef Google Scholar

[69] Zhao Q, Yan Z, Chen C, Chen J. Chem Rev, 2017, 117: 10121-10211 CrossRef PubMed Google Scholar

[70] Yeo BS, Bell AT. J Am Chem Soc, 2011, 133: 5587-5593 CrossRef PubMed Google Scholar

[71] Walton AS, Fester J, Bajdich M, Arman MA, Osiecki J, Knudsen J, Vojvodic A, Lauritsen JV. ACS Nano, 2015, 9: 2445-2453 CrossRef Google Scholar

[72] Ng JWD, García-Melchor M, Bajdich M, Chakthranont P, Kirk C, Vojvodic A, Jaramillo TF. Nat Energy, 2016, 1: 16053-16060 CrossRef ADS Google Scholar

[73] Gubo M, Ebensperger C, Meyer W, Hammer L, Heinz K. Phys Rev B, 2011, 83: 075435 CrossRef ADS Google Scholar

[74] Zeuthen H, Kudernatsch W, Peng G, Merte LR, Ono LK, Lammich L, Bai Y, Grabow LC, Mavrikakis M, Wendt S, Besenbacher F. J Phys Chem C, 2013, 117: 15155-15163 CrossRef Google Scholar

[75] Strickler AL, Escudero-Escribano M, Jaramillo TF. Nano Lett, 2017, 17: 6040-6046 CrossRef PubMed ADS Google Scholar

[76] Zhang J, Liu J, Xi L, Yu Y, Chen N, Sun S, Wang W, Lange KM, Zhang B. J Am Chem Soc, 2018, 140: 3876-3879 CrossRef PubMed Google Scholar

  • Figure 1

    Energetically favorable NiO6 octahedral frameworks of β-NiOOH. Structures 1, 2 and 6 are layered frameworks; structures 3–5 and 7–9 are tunnel structures isostructural with MnO2 polymorphs [36] (color online).

  • Figure 2

    Phase transition from spinel Mn3O4 to layered δ-MnO2. (a) Mechanism; (b) energetic profiles; (c) intermediate states [38] (color online).

  • Figure 3

    Surface terminations of Co3O4(110) [39]: (a) contour plots of the surface spin density, (b) magnetic ground-state configurations, (c) band structures. Surface terminations of Co3O4(100) [41]: (d) surface energies, (e) density of states (color online).

  • Figure 4

    (a) Heats of formation of doped α-MnO2 catalysts and (b) related density of states [51] (color online).

  • Figure 5

    (a) Volcano plotof absorption free energy change versus catalytic activity (in terms of overpotentials) for cation-doped γ-NiOOH and γ-FeOOH [55]; diagrams of (b) active center structure and (c) splitting of Fe d states for the Pt-doped α-Fe2O3 catalyst [58] (color online).

  • Figure 6

    Schematic representation of the crystal frameworks of perovskite oxides CaMnO3−δ (δ=0, 0.25, 0.5) showing a transition from (a) to (c). (d) Density of states [62] (color online).

  • Figure 7

    Surface unit cells of NiOOH for (a) pure [64] and (b) Fe-doped case [65] in OER showing the location of H and OH vacancies; atomic formal charges and OER overpotential of NiOOH for (a) pure [64] and (b) Fe-doped case [65] with or without vacancies (color online).

  • Figure 8

    Different types of CoOx adsorbed on Au(111) surface [71] (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号