logo

SCIENTIA SINICA Chimica, Volume 49, Issue 6: 844-860(2019) https://doi.org/10.1360/N032018-00266

Application of scanning ion conductance microscope in cell characterizations

More info
  • ReceivedDec 25, 2018
  • AcceptedJan 11, 2019
  • PublishedMar 12, 2019

Abstract

Cell morphology, electrical and mechanical functions are of great significance in cell biology. However, traditional cell characterization methods are not suitable for study of living cells in a non-invasive, in situ and micro/nano-scaled way. As a new type of scanning probe microscopy, scanning ion conductance microscopy (SICM) enables non-invasive, high-resolution and real-time imaging of living cells based on its non-contact scanning mode and usage of nanopipette as its probe. In recent years, SICM has been widely applied in cell biology and cell characterizations. This review mainly introduces the SICM applications in cell characterizations. First, we introduce the instrumental composition, working principle and three work modes of SICM, and compare the strengths and weakness of the three working modes. Then the applications of SICM in cell morphology, cellular electrical and mechanical properties are described in detail. In addition, in contrast to the traditional cell characterization methods, SICM has the distinct advantages in in situ characterization of cells. Finally, the challenges of SICM in cell characterizations are discussed and its future development is proposed.


Funded by

国家自然科学基金(21775117)

2017年度陕西省留学人员科技活动择优优秀项目(2017010)

陕西省国际科技合作与交流计划项目(2016KW-064)

中国博士后科学基金面上项目(2016M592773)

西安交通大学基本科研业务费重点研发计划专项培育类项目


References

[1] Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Chem Rev, 2017, 117: 12764-12850 CrossRef PubMed Google Scholar

[2] Tilney LG, Mooseker M. Proc Natl Acad Sci USA, 1971, 68: 2611-2615 CrossRef ADS Google Scholar

[3] Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ. Science, 2010, 329: 436-439 CrossRef PubMed ADS Google Scholar

[4] Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. Nature, 1997, 389: 816-824 CrossRef PubMed ADS Google Scholar

[5] Kirichok Y, Krapivinsky G, Clapham DE. Nature, 2004, 427: 360-364 CrossRef PubMed ADS Google Scholar

[6] Parsons JT, Horwitz AR, Schwartz MA. Nat Rev Mol Cell Biol, 2010, 11: 633-643 CrossRef PubMed Google Scholar

[7] Liu N, Wang Y, Hu X, He B, Qu G, Shi J, Hu L, Jiang G. Sci Sin Chim, 2018, 48: 1217–1225 (in Chinese) [刘念, 王园园, 胡新笑, 何滨, 曲广波, 史建波, 胡立刚, 江桂斌. 中国科学: 化学, 2018, 48: 1217–1225]. Google Scholar

[8] Li H, Zhang Y, Lin J. Sci Sin Chim, 2014, 44: 777–783 (in Chinese) [李海芳, 张英, 林金明. 中国科学: 化学, 2014, 44: 777–783]. Google Scholar

[9] Gong X, Xiong X, Zhang S, Fang X, Zhang X. Sci Sin Chim, 2016, 46: 133 CrossRef Google Scholar

[10] Yin H, Tang J, Zhang J. Sci Sin Chim, 2017, 47: 267–276 (in Chinese) [尹昊琰, 唐娟, 张俊龙. 中国科学: 化学, 2017. 47: 267–276]. Google Scholar

[11] Li D, Li Z, Yang X, Zhang C. Sci Sin Chim, 2018, 48: 45–57 (in Chinese) [李东钰, 李照, 杨兴斌, 张成孝. 中国科学: 化学, 2018, 48: 45–57]. Google Scholar

[12] Tian T, Zhou X. Sci Sin Chim, 2016, 46: 419–428 (in Chinese) [田沺, 周翔. 中国科学: 化学, 2016, 46: 419–428]. Google Scholar

[13] Evans EA. Biophys J, 1983, 43: 27-30 CrossRef ADS Google Scholar

[14] Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Käs J. Biophys J, 2001, 81: 767-784 CrossRef ADS Google Scholar

[15] Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK. Biophys J, 1996, 70: 556-567 CrossRef ADS Google Scholar

[16] Hansma PK, Drake B, Marti O, Gould SAC, Prater CB. Science, 1989, 243: 641-643 CrossRef ADS Google Scholar

[17] Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ. Biophys J, 1997, 73: 653-658 CrossRef ADS Google Scholar

[18] Shevchuk AI, Gorelik J, Harding SE, Lab MJ, Klenerman D, Korchev YE. Biophys J, 2001, 81: 1759-1764 CrossRef ADS Google Scholar

[19] Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GWJ, Frolenkov GI, Klenerman D, Korchev YE. Nat Methods, 2009, 6: 279-281 CrossRef PubMed Google Scholar

[20] Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE, Gorelik J. Science, 2010, 327: 1653-1657 CrossRef PubMed ADS Google Scholar

[21] Perry D, Paulose Nadappuram B, Momotenko D, Voyias PD, Page A, Tripathi G, Frenguelli BG, Unwin PR. J Am Chem Soc, 2016, 138: 3152-3160 CrossRef PubMed Google Scholar

[22] Pellegrino M, Orsini P, Pellegrini M, Baschieri P, Dinelli F, Petracchi D, Tognoni E, Ascoli C. Neurosci Res, 2011, 69: 234-240 CrossRef PubMed Google Scholar

[23] Sánchez D, Johnson N, Li C, Novak P, Rheinlaender J, Zhang Y, Anand U, Anand P, Gorelik J, Frolenkov GI, Benham C, Lab M, Ostanin VP, Schäffer TE, Klenerman D, Korchev YE. Biophys J, 2008, 95: 3017-3027 CrossRef ADS Google Scholar

[24] Bhargava A, Lin X, Novak P, Mehta K, Korchev Y, Delmar M, Gorelik J. Circ Res, 2013, 112: 1112-1120 CrossRef PubMed Google Scholar

[25] Shevchuk AI, Frolenkov GI, Sánchez D, James PS, Freedman N, Lab MJ, Jones R, Klenerman D, Korchev YE. Angew Chem Int Ed, 2006, 45: 2212-2216 CrossRef PubMed Google Scholar

[26] Comstock DJ, Elam JW, Pellin MJ, Hersam MC. Anal Chem, 2010, 82: 1270-1276 CrossRef Google Scholar

[27] Vivekananda U, Novak P, Bello OD, Korchev YE, Krishnakumar SS, Volynski KE, Kullmann DM. Proc Natl Acad Sci USA, 2017, 114: 2395-2400 CrossRef PubMed Google Scholar

[28] Chen CC, Zhou Y, Baker LA. Annu Rev Anal Chem, 2012, 5: 207-228 CrossRef PubMed ADS Google Scholar

[29] Anariba F, Anh JH, Jung GE, Cho NJ, Cho SJ. Mod Phys Lett B, 2012, 26: 1130003 CrossRef ADS Google Scholar

[30] Gorelik J, Zhang Y, Shevchuk AI, Frolenkov GI, Sánchez D, Lab MJ, Vodyanoy I, Edwards CRW, Klenerman D, Korchev YE. Mol Cell Endocrinol, 2004, 217: 101-108 CrossRef PubMed Google Scholar

[31] Zhuang J, Jiao Y, Li Z, Lang J, Li F. Ultramicroscopy, 2018, 190: 66-76 CrossRef PubMed Google Scholar

[32] Liu X, Yang X, Zhang B, Zhang X, Lu H, Zhang J, Zhang Y. Brain Res, 2011, 1386: 35-40 CrossRef PubMed Google Scholar

[33] 3 Chiao CC, Lane AB. Analyst, 2010, 136: 90–97. Google Scholar

[34] Takahashi Y, Murakami Y, Nagamine K, Shiku H, Aoyagi S, Yasukawa T, Kanzaki M, Matsue T. Phys Chem Chem Phys, 2010, 12: 10012-10017 CrossRef PubMed ADS Google Scholar

[35] Korchev YE, Gorelik J, Lab MJ, Sviderskaya EV, Johnston CL, Coombes CR, Vodyanoy I, Edwards CRW. Biophys J, 2000, 78: 451-457 CrossRef ADS Google Scholar

[36] Li M, Liu L, Xi N, Wang Y, Dong Z, Xiao X, Zhang W. Chin Sci Bull, 2010, 55: 2188 CrossRef Google Scholar

[37] Rheinlaender J, Geisse NA, Proksch R, Schäffer TE. Langmuir, 2011, 27: 697-704 CrossRef PubMed Google Scholar

[38] Happel P, Wehner F, Dietzel ID. Modern Res Edu Topics Micro, 2007, 2: 968–975. Google Scholar

[39] Miragoli M, Moshkov A, Novak P, Shevchuk A, Nikolaev VO, El-Hamamsy I, Potter CMF, Wright P, Kadir SHSA, Lyon AR, Mitchell JA, Chester AH, Klenerman D, Lab MJ, Korchev YE, Harding SE, Gorelik J. J R Soc Interface, 2011, 8: 913-925 CrossRef PubMed Google Scholar

[40] Potter CMF, Schobesberger S, Lundberg MH, Weinberg PD, Mitchell JA, Gorelik J. PLoS ONE, 2012, 7: e31228 CrossRef PubMed ADS Google Scholar

[41] Gorelik J, Shevchuk AI, Frolenkov GI, Diakonov IA, Lab MJ, Kros CJ, Richardson GP, Vodyanoy I, Edwards CRW, Klenerman D, Korchev YE. Proc Natl Acad Sci USA, 2003, 100: 5819-5822 CrossRef PubMed ADS Google Scholar

[42] Zhuang J, Wang Z, Li Z, Liang P, Vincent M. Microsc Microanal, 2018, 24: 264-276 CrossRef PubMed ADS Google Scholar

[43] Gorelik J, Ali NN, Sheikh Abdul Kadir SH, Lab M, Stojkovic P, Armstrong L, Sviderskaya EV, Negulyaev YA, Klenerman D, Bennett DC, Lako M, Harding SE, Stojkovic M, Korchev YE. Tissue Eng Part C-Methods, 2008, 14: 311-318 CrossRef PubMed Google Scholar

[44] Gorelik J, Ali NN, Shevchuk AI, Lab M, Williamson C, Harding SE, Korchev YE. Tissue Eng, 2006, 12: 657-664 CrossRef PubMed Google Scholar

[45] Kim SO, Kim J, Okajima T, Cho NJ. Nano Conv, 2017, 4: 5-13 CrossRef PubMed ADS Google Scholar

[46] Zhu C, Shi W, Daleke DL, Baker LA. Analyst, 2018, 143: 1087-1093 CrossRef PubMed ADS Google Scholar

[47] Masato N, Yusuke M, Futoshi IUT. Semin Cell Dev Bio, 2017, 125–131. Google Scholar

[48] Kemp SJ, Thorley AJ, Gorelik J, Seckl MJ, O’Hare MJ, Arcaro A, Korchev Y, Goldstraw P, Tetley TD. Am J Respir Cell Mol Biol, 2008, 39: 591-597 CrossRef PubMed Google Scholar

[49] Seifert J, Rheinlaender J, Novak P, Korchev YE, Schäffer TE. Langmuir, 2015, 31: 6807-6813 CrossRef PubMed Google Scholar

[50] Ida H, Takahashi Y, Kumatani A, Shiku H, Matsue T. Anal Chem, 2017, 89: 6015-6020 CrossRef PubMed Google Scholar

[51] Happel P, Dietzel ID. J Nanobiotecg, 2009, 7: 1–9. Google Scholar

[52] Gorelik J, Yang LQ, Zhang Y, Lab M, Korchev Y, Harding SE. Cardiovasc Res, 2006, 72: 422-429 CrossRef PubMed Google Scholar

[53] Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kikonda Kanda G, Lab MJ, Korchev YE, Harding SE, Gorelik J. Proc Natl Acad Sci USA, 2009, 106: 6854-6859 CrossRef PubMed ADS Google Scholar

[54] Ibrahim M, Al Masri A, Navaratnarajah M, Siedlecka U, Soppa GK, Moshkov A, Al-Saud SA, Gorelik J, Yacoub MH, Terracciano CMN. FASEB J, 2010, 24: 3321-3329 CrossRef PubMed Google Scholar

[55] James AF, Sabirov RZ, Okada Y. Biochem Biophys Res Commun, 2010, 391: 841-845 CrossRef PubMed Google Scholar

[56] Schobesberger S, Jönsson P, Buzuk A, Korchev Y, Siggers J, Gorelik J. Biophys J, 2016, 110: 141-146 CrossRef PubMed ADS Google Scholar

[57] Zhou Y, Saito M, Miyamoto T, Novak P, Shevchuk AI, Korchev YE, Fukuma T, Takahashi Y. Anal Chem, 2018, 90: 2891-2895 CrossRef PubMed Google Scholar

[58] Lorin C, Gueffier M, Bois P, Faivre JF, Cognard C, Sebille S. Cell Biochem Biophys, 2013, 66: 723-736 CrossRef PubMed Google Scholar

[59] Yang X, Liu X, Lu H, Zhang X, Ma L, Gao R, Zhang Y. Chem Res Toxicol, 2012, 25: 297-304 CrossRef PubMed Google Scholar

[60] Novak P, Shevchuk A, Ruenraroengsak P, Miragoli M, Thorley AJ, Klenerman D, Lab MJ, Tetley TD, Gorelik J, Korchev YE. Nano Lett, 2014, 14: 1202-1207 CrossRef PubMed ADS Google Scholar

[61] Shan Y, Panday N, Myoung Y, Twomey M, Wang X, Li W, Celik E, Moy V, Wang H, Moon JH, He J. Macromol Biosci, 2016, 16: 599-607 CrossRef PubMed Google Scholar

[62] Su SW, Chieng A, Parres-Gold J, Chang M, Wang Y. Faraday Discuss, 2018, 210: 131-143 CrossRef PubMed ADS Google Scholar

[63] Page A, Kang M, Armitstead A, Perry D, Unwin PR. Anal Chem, 2017, 89: 3021-3028 CrossRef PubMed Google Scholar

[64] Wang M, Chai N, Sha B, Guo M, Zhuang J, Xu F, Li F. J Cell Physiol, 2017, 233: 1414-1423 CrossRef PubMed Google Scholar

[65] Yang YH, Jiang HY. Chin Sci Bull, 2018, 63: 502-510 CrossRef Google Scholar

[66] Lee GM. J Cell Science, 1989, 94: 443–447. Google Scholar

[67] Crowe WE, Altamirano J, Huerto L, Alvarez-Leefmans FJ. Neuroscience, 1995, 69: 283-296 CrossRef Google Scholar

[68] Kawahara K, Onodera M, Fukuda Y. Jpn J Physiol, 1994, 44: 411-419 CrossRef Google Scholar

[69] Zhou Y, Chen X, Liu X, Lu H, Li Y, Zhu H, An G, Zhang N, Zhang J, Ma Q, Zhang Y. J Membr Biol, 2014, 247: 461-468 CrossRef PubMed Google Scholar

[70] Ivanpva R, Orsini D, Munye M, Rangseesorranan S, Hart SL, Moss GWJ. ACS Appl Mater Interfaces, 2019, CrossRef Google Scholar

[71] Pellegrino M, Orsini P, De Gregorio F. Neurosci Res, 2009, 64: 290-296 CrossRef PubMed Google Scholar

[72] Mann SA, Meyer JW, Dietzel ID. J Microsc, 2010, 224: 152-157 CrossRef PubMed Google Scholar

[73] Happel P, Möller K, Kunz R, Dietzel ID. BMC Bioinformatics, 2010, 11: 1–16. Google Scholar

[74] Tanaka A, Tanaka R, Kasai N, Tsukada S, Okajima T, Sumitomo K. J Struct Biol, 2015, 191: 32-38 CrossRef PubMed Google Scholar

[75] Happel P, Hoffmann G, Mann SA, Dietzel ID. J Microsc, 2003, 212: 144-151 CrossRef Google Scholar

[76] Klippenstein V, Mony L, Paoletti P. Trends Biochem Sci, 2018, 43: 436-451 CrossRef PubMed Google Scholar

[77] Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D. Nature, 2015, 520: 511-517 CrossRef PubMed ADS Google Scholar

[78] Shi W, Zeng Y, Zhu C, Xiao Y, Cummins TR, Hou J, Baker LA. Small, 2018, 14: 1702945 CrossRef PubMed Google Scholar

[79] Gorelik J, Gu Y, Spohr HA, Shevchuk AI, Lab MJ, Harding SE, Edwards CRW, Whitaker M, Moss GWJ, Benton DCH, Sánchez D, Darszon A, Vodyanoy I, Klenerman D, Korchev YE. Biophys J, 2002, 83: 3296-3303 CrossRef ADS Google Scholar

[80] Takahashi Y, Ida H, Matsumae Y, Komaki H, Zhou Y, Kumatani A, Kanzaki M, Shiku H, Matsue T. Phys Chem Chem Phys, 2017, 19: 26728-26733 CrossRef PubMed ADS Google Scholar

[81] Shi W, Zeng Y, Zhou L, Xiao Y, Cummins TR, Baker LA. Faraday Discuss, 2016, 193: 81-97 CrossRef PubMed ADS Google Scholar

[82] Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Proc Natl Acad Sci USA, 2013, 110: 17380-17385 CrossRef PubMed ADS Google Scholar

[83] Shih H, Lin CC. Macromol Rapid Commun, 2013, 34: 269-273 CrossRef PubMed Google Scholar

[84] Busscher HJ, van der Mei HC. PLoS Pathog, 2012, 8: e1002440 CrossRef PubMed Google Scholar

[85] Gregory PJ. Plant Roots: Growth, Activity and Interactions with the Soil. Hoboken: John Wiley & Sons, 2008. Google Scholar

[86] Rivera-Gil P, Jimenez de Aberasturi D, Wulf V, Pelaz B, del Pino P, Zhao Y, de la Fuente JM, Ruiz de Larramendi I, Rojo T, Liang XJ, Parak WJ. Acc Chem Res, 2013, 46: 743-749 CrossRef PubMed Google Scholar

[87] Tedja R, Lim M, Amal R, Marquis C. ACS Nano, 2012, 6: 4083-4093 CrossRef PubMed Google Scholar

[88] Haupt A, Campetelli A, Bonazzi D, Piel M, Chang F, Minc N. PLoS Biol, 2014, 12: e1002029 CrossRef PubMed Google Scholar

[89] Wong JY, Langer R, Ingber DE. Proc Natl Acad Sci USA, 1994, 91: 3201-3204 CrossRef ADS Google Scholar

[90] Chen F, Manandhar P, Ahmed MS, Chang S, Panday N, Zhang H, Moon JH, He J. Macromol Biosci, 2018, 18: 1800271 CrossRef PubMed Google Scholar

[91] Alsteens D, Dupres V, Yunus S, Latgé JP, Heinisch JJ, Dufrêne YF. Langmuir, 2012, 28: 16738-16744 CrossRef PubMed Google Scholar

[92] Almonte L, Lopez-Elvira E, Baró AM. ChemPhysChem, 2014, 15: 2768-2773 CrossRef PubMed Google Scholar

[93] Sotres J, Baro AM. Appl Phys Lett, 2008, 93: 715–717. Google Scholar

[94] Zeisberg EM, Kalluri R. Circ Res, 2010, 107: 1304-1312 CrossRef PubMed Google Scholar

[95] Zhang C, Wang W, He W, Xi N, Wang Y, Liu L. Biophys J, 2018, 114: 188-200 CrossRef PubMed ADS Google Scholar

[96] Pellegrino M, Pellegrini M, Orsini P, Tognoni E, Ascoli C, Baschieri P, Dinelli F. Pflugers Arch-Eur J Physiol, 2012, 464: 307-316 CrossRef PubMed Google Scholar

[97] Rheinlaender J, Schäffer TE. Soft Matter, 2013, 9: 3230-3236 CrossRef ADS Google Scholar

[98] Miragoli M, Yacoub MH, El-Hamamsy I, Sanchez-Alonso JL, Moshkov A, Mongkoldhumrongkul N, Padala M, Paramagurunathan S, Sarathchandra P, Korchev YE, Gorelik J, Chester AH. Am J Physiol-Heart Circul Physiol, 2014, 307: H15-H24 CrossRef PubMed Google Scholar

[99] Choi M, Baker LA. Anal Chem, 2018, 90: 11797-11801 CrossRef PubMed Google Scholar

[100] Li G, Fang X. Micron, 2018, 114: 8-13 CrossRef PubMed Google Scholar

  • Figure 1

    Correlation among cell morphology, electric function, mechanical function and chemical function (color online).

  • Figure 2

    The development history of SICM and its typical applications in cell researches [1627] (color online).

  • Figure 3

    Illustration of SICM working principle.

  • Figure 4

    Three working modes of SICM. (a) Non-modulated (DC) mode and (b) the DC approach curve. (c) Distance-modulated (AC) mode and (d) the AC approach curve. Idc represents the dc component of IMOD, and Iac represents the ac component of IMOD. (e) Hopping feedback mode. (f) Modified hopping feedback mode (Prescan and precisely rescan of interested area) (color online).

  • Figure 5

    (a) SICM and AFM images of a fixed fibroblast cell [37]. (b) SICM images of a murine melanocyte [17], an immature oligodendrocyte [38], live hippocampal neurons [19] and neonatal rat ventricular myocytes [39]. (c) SICM images of the inner and outer part of the porcine aorta [40] (color online).

  • Figure 6

    SICM images of the ultrastructure of different cell surfaces. (a) SICM mapping of the ciliary pocket from a NIH3T3 cell [57]. (b) SICM images of live hippocampal neurons with high resolution [19]. (c) Simultaneous fluorescence and topography imaging of interaction between single nanoparticle and structures in the cell membrane [60]. (d) SICM-SECM topographical and [Ru(NH3)6]3+ uptake mapping of Zea mays root hair cells [63] (color online).

  • Figure 7

    The applications of SICM in cell volume characterization. (a) Integral calculation of cell volume using SICM [35]. (b) Volume change measurement of hepatic cells by SICM [38]. (c) Time-lapse SICM images of neuron apoptosis [74]. (d) Effects of drug-induced changes in cell morphology by SICM [69] (color online).

  • Figure 8

    Characterization of electrical properties of cells by SICM. (a) The SICM image of a cardiomyocyte revealing topographic structures and functional ion channels [24]. (b) Electrochemical imaging and ion current measurements on an adipocyte by SECM-SICM [80]. (c) Surface charge mapping of living Zea mays root hairs by SICM [21] (color online).

  • Figure 9

    Characterization of mechanical properties of cells by SICM. (a) Schematic diagram of applying mechanical stimuli to cells using SICM [23]. (b) Pressure response of a living rat dorsal sensory neuron [23]. (c) Morphologic changes imaging in the induced growth of neuron growth cones by SICM [22].

  • Figure 10

    Combination of SICM with other techniques (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1