logo

SCIENTIA SINICA Vitae, Volume 46, Issue 4: 468-474(2016) https://doi.org/10.1360/N052016-00126

Agriculture Driving Male Expansion in Neolithic Time

More info
  • ReceivedJan 18, 2016
  • AcceptedMar 1, 2016

Abstract

The emergence of agriculture is suggested to have driven extensive human population growth. However, genetic evidence from maternal mitochondrial genomes suggests major population expansions began before the emergence of agriculture. Therefore, the role of agriculture in initial population expansions remains controversial. Here, we analyzed a set of globally distributed whole Y chromosome and mitochondrial genomes of 526 male samples from 1000 Genome Project. We found that most major paternal lineage expansions coalesced in Neolithic Time. The estimated effective population sizes through time revealed strong evidence for 10- to 100-fold increase in population growth of males with the advent of agriculture. This sex-biased Neolithic expansion might result from the reduction in hunting-related mortality of males.


Funded by

国家自然科学基金优秀青年科学基金(31222030)

教育部科学技术研究项目(113022A)

上海市教育委员会曙光计划(14SG05)


References

[1] Diamond J, Bellwood P. Farmers and their languages: the first expansions. Science, 2003, 300: 597-603 CrossRef Google Scholar

[2] Pinhasi R, Fort J, Ammerman A J. Tracing the origin and spread of agriculture in Europe. PLoS Biol, 2005, 3: e410 CrossRef Google Scholar

[3] Diamond J. Evolution, consequences and future of plant and animal domestication. Nature, 2002, 418: 700-707 CrossRef Google Scholar

[4] Jobling M, Hurles M, Tyler-Smith C. Human Evolutionary Genetics: Agricultural Expansions. New York: Garland Publishing. 2004, : 299-306 Google Scholar

[5] Gignoux C R, Henn B M, Mountain J L. Rapid, global demographic expansions after the origins of agriculture. Proc Natl Acad Sci USA, 2011, 108: 6044-6049 CrossRef Google Scholar

[6] Atkinson Q D, Gray R D, Drummond A J. MtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory. Mol Biol Evol, 2008, 25: 468-474 CrossRef Google Scholar

[7] Zheng H X, Yan S, Qin Z D, et al. Major population expansion of East Asians began before Neolithic Time: evidence of mtDNA genomes. PLoS One, 2011, 6: e25835 CrossRef Google Scholar

[8] Zheng H X, Yan S, Jin L, et al. MtDNA analysis of global populations support that major population expansions began before Neolithic Time. Sci Rep, 2012, 2: 745 Google Scholar

[9] Wang C C, Li H. Inferring human history in East Asia from Y chromosomes. Invest genet, 2013, 4: 11 CrossRef Google Scholar

[10] Wei W, Ayub Q, Chen Y, et al. A calibrated human Y-chromosomal phylogeny based on resequencing. Genome Res, 2013, 23: 388-395 CrossRef Google Scholar

[11] Poznik G D, Henn B M, Yee M C, et al. Sequencing Y chromosomes resolves discrepancy in time to common ancestor of males versus females. Science, 2013, 341: 562-565 CrossRef Google Scholar

[12] Francalacci P, Morelli L, Angius A, et al. Low-pass DNA sequencing of 1200 Sardinians reconstructs European Y-Chromosome phylogeny. Science, 2013, 341: 565-569 CrossRef Google Scholar

[13] Yan S, Wang C C, Zheng H X, et al. Y Chromosomes of 40% Chinese are descendants of three Neolithic super-grandfathers. PLoS One, 2014, 9: e105691 CrossRef Google Scholar

[14] Genomes Project Consortium et al . An integrated map of genetic variation from 1,092 human genomes. Nature, 2012, 491: 56-65 CrossRef Google Scholar

[15] Van Geystelen A, Decorte R, Larmuseau M H. AMY-tree: an algorithm to use whole genome SNP calling for Y chromosomal phylogenetic applications. BMC Genomics, 2013, 14: 101 CrossRef Google Scholar

[16] Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 2003, 52: 696-704 CrossRef Google Scholar

[17] Drummond A J, Nicholls G K, Rodrigo A G, et al. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data Genetics, 2002, 161: 1307–1320. Google Scholar

[18] Drummond A J, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol, 2007, 7: 214 CrossRef Google Scholar

[19] Darriba D, Taboada G L, Posada D, et al. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods, 2012, 9: 772 Google Scholar

[20] Yang Z H. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24: 1586-1591 CrossRef Google Scholar

[21] Fan L, Yao Y G. An update to MitoTool: using a new scoring system for faster mtDNA haplogroup determination. Mitochondrion, 2013, 13: 360-363 CrossRef Google Scholar

[22] Xue Y, Wang Q, Long Q, et al. Human Y chromosome base-substitution mutation rate measured by Direct Sequencing in a deep-rooting pedigree. Curr Biol, 2009, 19: 1453-1457 CrossRef Google Scholar

[23] Balaresque P, Bowden G R, Adams S M, et al. A predominantly Neolithic origin for European paternal lineages. PLoS Biol, 2010, 8: e1000285 CrossRef Google Scholar

[24] Wang C C, Yan S, Qin Z D, et al. Late Neolithic expansion of ancient Chinese revealed by Y chromosome haplogroup O3a1c-002611. J Syst Evol, 2013, 51: 280-286 CrossRef Google Scholar

[25] Ding Q L, Wang C C, Farina S E, et al. Mapping human genetic diversity on the Japanese archipelago. Adv Anthropol, 2011, 1: 19-25 CrossRef Google Scholar

[26] Sims L M, Garvey D, Ballantyne J, et al. Sub-populations within the major European and African derived haplogroups R1b3 and E3a are differentiated by previously phylogenetically undefined Y-SNPs. Hum Mutat, 2007, 28: 97 Google Scholar

[27] Menozzi P, Piazza A, Cavalli-Sforza L. Synthetic maps of human gene frequencies in Europeans. Science, 1978, 201: 786 CrossRef Google Scholar

[28] Skoglund P, Malmström H, Raghavan M, et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science, 2012, 336: 466-469 CrossRef Google Scholar

[29] Wang C C, Gilbert M T, Jin L, et al. Evaluating the Y chromosomal timescale in human demographic and lineage dating. Invest Genet, 2014, 5: 1 CrossRef Google Scholar

[30] Genomes Project Consortium . A global reference for human genetic variation. Nature, 2015, 526: 68-74 CrossRef Google Scholar

  • 图 1

    人类Y染色体的系统发育树

  • 图 2

    Y染色体与线粒体的BSP显示了相应时间的男性与女性的有效群体大小

  • 表 1   依据BSP计算的人口增长速率

    农业起源时间(年)

    群体

    Y染色体

    线粒体

    增长时段(年)

    增长速率(%)

    最快增长时段(年)

    该时段最大增长速率(%)

    增长时段(年)

    增长速率(%)

    最快增长时段(年)

    该时段最大增长速率(%)

    非洲

    5000~4000

    ASW

    5700~470

    0.0472%

    3820~3340

    0.1842%

    25000~7000

    0.0052%

    20380~19600

    0.0111%

    LWK

    6480~3990,

    2990~500

    0.0196%, 0.1247%

    2000~1500

    0.4004%

    29600~9600

    0.0013%

    22400~21600

    0.0025%

    YRI

    6200~340

    0.0678%

    3100~2760

    0.2626%

    12100~0

    0.0178%

    7290~6480

    0.0385%

    欧洲

    9000~6000

    CEU

    4120~310

    0.1002%

    2220~1900

    0.4358%

    13300~650

    0.0258%

    10400~10080

    0.0967%

    FIN

    4480~750

    0.0946%

    2240~1870

    0.4812%

    27200~3300

    0.0061%

    10200~9920

    0.0177%

    GBR

    4600~1060

    0.1300%

    3180~2830

    0.4801%

    12400~1500

    0.0207%

    8000~7700

    0.0722%

    IBS

    6060~2240

    0.0362%

    4490~4260

    0.0967%

    15110~2350

    0.0088%

    12500~12250

    0.0236%

    TSI

    3480~870

    0.1405%

    2610~2180

    0.5424%

    14700~1670

    0.0318%

    11030~10700

    0.1616%

    亚洲

    9000

    CHB

    36300~8890, 8520~5560, 5180~370

    0.0025%, 0.0185%, 0.0488%

    2960~2590

    0.2485%

    35500~720

    0.0141%

    33750~33390, 11500~11130

    0.0619%, 0.0328%

    CHS

    6460~650

    0.0432%

    1940~1610

    0.3434%

    14810~3170

    0.0133%

    34210~33860, 10580~10230

    0.0556%, 0.0471%

    JPT

    4200~840

    0.0896%

    2520~2100

    0.5368%

    6600~350

    0.0148%

    33350~33000, 4170~3820

    0.0366%, 0.0295%

    美洲

    5000~4000

    CLM

    4240~1410

    0.1071%

    3300~2830

    0.3121%

    70000~29100, 1500~0

    0.0022%, 0.0278%

    1490~750

    0.0281%

    MXL

    6400~460

    0.1554%

    5030~4570

    0.3021%

    11150~3500

    0.0371%

    9240~8920

    0.1684%

    PUR

    3900~430

    0.05117%

    3030~2600

    0.1206%

    55000~23400, 10330~6200

    0.0016%, 0.0057%

    36490~35800

    0.0305%

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1