logo

SCIENTIA SINICA Vitae, Volume 47, Issue 7: 708-717(2017) https://doi.org/10.1360/N052017-00131

促生长剂喹乙醇诱导斑马鱼消化道菌群失衡增加病原菌感染风险研究

More info
  • ReceivedApr 17, 2017
  • AcceptedMay 9, 2017
  • PublishedJul 10, 2017

Abstract

畜禽和水产养殖业, 低剂量的抗生素被广泛地用作促生长剂. 畜禽中, 低剂量抗生素的应用可降低病原菌感染, 而水产中的应用却增加了患病风险, 而抗生素在水产中应用经验总结尚未在实验室条件得到验证. 本研究通过低剂量的喹乙醇促生长作用建立斑马鱼(Danio rerio)易感染模型. 喹乙醇饲喂斑马鱼2周后显著地改变消化道菌群, 优势菌由鲸杆菌变为肠杆菌. 此外, 喹乙醇还抑制斑马鱼的炎症因子(P<0.05). 进一步通过无菌斑马鱼模型, 分别采用喹乙醇直接浸浴和菌群转接方式证明喹乙醇的作用方式, 结果表明喹乙醇(直接)和转接后的菌群(间接)均可显著抑制斑马鱼的炎症因子(P<0.05), 而抗病力下降则主要是由喹乙醇通过改变消化道微生物菌群进行介导. 总之, 本研究结果表明低剂量的喹乙醇诱导斑马鱼消化道菌群失衡导致抗病力下降.


Funded by

国家重点基础研究发展计划(2015CB150605)

国家自然科学基金(31272672,31572633)

北京冷水鱼创新团队(SCGWZJ 20161104-4)

中央级公益性科研院所基本科研业务(1610382016013)


References

[1] Castanon J I. History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Sci, 2007, 86: 2466-2471 CrossRef PubMed Google Scholar

[2] Khadem A, Soler L, Everaert N, et al. Growth promotion in broilers by both oxytetracycline and Macleaya cordata extract is based on their anti-inflammatory properties. Br J Nutr, 2014, 112: 1110-1118 CrossRef PubMed Google Scholar

[3] Xiong W, Sun Y, Zhang T, et al. Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China. Microb Ecol, 2015, 70: 425-432 CrossRef PubMed Google Scholar

[4] Li H, Wang W, Mai K, et al. Effect of dietary olaquindox on the growth of large yellow croaker (Pseudosciaena crocea R.) and the distribution of its residues in fish tissues. J Ocean Univ China, 2014, 13: 820-824 CrossRef ADS Google Scholar

[5] Casewell M, Friis C, Marco E, et al. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemoth, 2003, 52: 159-161 CrossRef PubMed Google Scholar

[6] Oliveri Conti G, Copat C, Wang Z, et al. Determination of illegal antimicrobials in aquaculture feed and fish: an ELISA study. Food Control, 2015, 50: 937-941 CrossRef Google Scholar

[7] Zhang Q, Cheng J, Xin Q. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos. Ecotoxicology, 2015a, 24: 707–719. Google Scholar

[8] Bellmann C, Tipping A, Sumaila U R. Global trade in fish and fishery products: an overview. Mar Policy, 2016, 69: 181-188 CrossRef Google Scholar

[9] Lillicrap A, Macken A, Thomas K V. Recommendations for the inclusion of targeted testing to improve the regulatory environmental risk assessment of veterinary medicines used in aquaculture. Environ Int, 2015, 85: 1-4 CrossRef PubMed Google Scholar

[10] Fečkaninová A, Koščová J, Mudroňová D, et al. The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture, 2017, 469: 1-8 CrossRef Google Scholar

[11] Hai N V. Research findings from the use of probiotics in tilapia aquaculture: a review. Fish Shellfish Immunol, 2015, 45: 592-597 CrossRef PubMed Google Scholar

[12] Ubeda C, Pamer E G. Antibiotics, microbiota, and immune defense. Trends Immunol, 2012, 33: 459-466 CrossRef PubMed Google Scholar

[13] Pamer E G. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science, 2016, 352: 535-538 CrossRef PubMed ADS Google Scholar

[14] Looft T, Johnson T A, Allen H K, et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci USA, 2012, 109: 1691-1696 CrossRef PubMed ADS Google Scholar

[15] Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature, 2012, 488: 621-626 CrossRef PubMed ADS Google Scholar

[16] Cox L M, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell, 2014, 158: 705-721 CrossRef PubMed Google Scholar

[17] Brüssow H. Growth promotion and gut microbiota: insights from antibiotic use. Environ Microbiol, 2015, 17: 2216–2227. Google Scholar

[18] Defoirdt T, Boon N, Sorgeloos P, et al. Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotech, 2007, 25: 472-479 CrossRef PubMed Google Scholar

[19] Halling-Sørensen B. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch Environ Contam Toxicol, 2001, 40: 451-460 CrossRef Google Scholar

[20] Hermann A C, Millard P J, Blake S L, et al. Development of a respiratory burst assay using zebrafish kidneys and embryos. J Immunol Methods, 2004, 292: 119-129 CrossRef PubMed Google Scholar

[21] Zhu S M, Deng Y L, Ruan Y J, et al. Biological denitrification using poly(butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment. Bioresource Tech, 2015, 192: 603-610 CrossRef PubMed Google Scholar

[22] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol, 2015b, 49: 6772–6782. Google Scholar

[23] Liu Z, Liu W, Ran C, et al. Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis. Sci Rep, 2016, 6: 1–12. Google Scholar

[24] Oyarbide U, Iturria I, Rainieri S, et al. Use of gnotobiotic zebrafish to study Vibrio anguillarum pathogenicity. Zebrafish, 2015, 12: 71-80 CrossRef PubMed Google Scholar

[25] Faber F, Tran L, Byndloss M X, et al. Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion. Nature, 2016, 534: 697-699 CrossRef PubMed ADS Google Scholar

[26] Rivera-Chávez F, Zhang L F, Faber F, et al. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe, 2016, 19: 443–454. Google Scholar

[27] Gao P, Mao D, Luo Y, et al. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res, 2012, 46: 2355-2364 CrossRef PubMed Google Scholar

[28] Lange K, Buerger M, Stallmach A, et al. Effects of antibiotics on gut microbiota. Dig Dis, 2016, 34: 260-268 CrossRef PubMed Google Scholar

[29] Jeong S H, Song Y K, Cho J H. Risk assessment of ciprofloxacin, flavomycin, olaquindox and colistin sulfate based on microbiological impact on human gut biota. Regul Toxicol Pharmacol, 2009, 53: 209-216 CrossRef PubMed Google Scholar

[30] Soler L, Miller I, Hummel K, et al. Growth promotion in pigs by oxytetracycline coincides with down regulation of serum inflammatory parameters and of hibernation-associated protein HP-27. Electrophoresis, 2016, 37: 1277-1286 CrossRef PubMed Google Scholar

[31] Araujo F G, Slifer T L, Remington J S. Effect of moxifloxacin on secretion of cytokines by human monocytes stimulated with lipopolysaccharide. Clin Microbiol Infect, 2002, 8: 26-30 CrossRef Google Scholar

[32] Xu D, Gao J, Gillilland Iii M, et al. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology, 2014, 146: 484-496.e4 CrossRef PubMed Google Scholar

[33] Hornef M. Pathogens, commensal symbionts, and pathobionts: discovery and functional effects on the host. ILAR J, 2015, 56: 159-162 CrossRef PubMed Google Scholar

[34] Coyne, M J, Roelofs K G, Comstock L E. Type VI secretion systems of human gut Bacteroidales segregateinto three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics, 2016, 17: 1–21. Google Scholar

[35] Round J L, Mazmanian S K. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol, 2009, 9: 313-323 CrossRef PubMed Google Scholar

[36] Thaiss C A, Zmora N, Levy M, et al. The microbiome and innate immunity. Nature, 2016, 535: 65-74 CrossRef PubMed ADS Google Scholar

[37] Kim M, Qie Y, Park J, et al. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe, 2016, 20: 202–214. Google Scholar

[38] Rolig A S, Parthasarathy R, Burns A R, et al. Individual members of the microbiota disproportionately modulate host innate immune responses. Cell Host Microbe, 2015, 18: 613–620. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1