logo

SCIENTIA SINICA Terrae, Volume 47, Issue 3: 354-366(2017) https://doi.org/10.1360/N072016-00080

夏季亚洲大地形双加热及近对流层顶位涡强迫的激发: 伊朗高原-青藏高原感热加热

More info
  • ReceivedNov 16, 2016
  • AcceptedFeb 13, 2017
  • PublishedMar 7, 2017

Abstract

基于诊断和数值模拟, 研究了夏季青藏高原和伊朗高原热力强迫的相互作用, 其对亚洲副热带季风区水汽通量辐合的贡献及对欧亚大陆上空高对流层顶和平流层低层冷中心形成的影响. 结果表明两大高原感热加热存在相互影响和反馈, 伊朗高原感热加热减少青藏高原的表面加热, 而青藏高原的感热加热则增加伊朗高原的表面加热; 形成了观测到的伊朗高原感热加热-青藏高原感热加热和凝结潜热释放-大气垂直环流之间的准平衡耦合系统(TIPS), 影响大气环流. 青藏高原上的感热-潜热相互反馈在这个TIPS耦合系统中起主要作用. 两大高原感热加热对其他地区的影响有相互加强也有相互抵消; 青藏高原感热加热引发的对亚洲副热带季风区水汽通量辐合贡献率为伊朗高原感热影响的2倍以上; 伊朗高原和青藏高原的感热加热共同作用对亚洲副热带季风区的水汽辐合作出最主要的贡献. TIPS的加热作用使对流层温度升高, 并抬升了其上空的对流层顶, 造成了那里平流层下层温度偏低; 与欧亚大陆大尺度热力强迫共同作用, 形成了对流层上层的暖性但在平流层下层为冷性的强大的反气旋环流南亚高压, 从而影响区域和全球的天气气候.


Funded by

国家自然科学基金项目(91437219,41275088,41328006)

中国气象局行业专项(GYHY201406001)

中国博士后科学基金项目(2016M600695)

NSFC-广东联合基金(第二期超级计算科学应用研究专项联合)


References

[1] 卞建春. 2009. 上对流层/下平流层大气垂直结构研究进展. 地球科学进展, 24: 262‒271. Google Scholar

[2] 刘超, 刘屹岷, 刘伯奇. 2015. 6种地表热通量资料在伊朗-青藏高原地区的对比分析. 气象科学, 35: 398‒404. Google Scholar

[3] 吴国雄, 刘平, 刘屹岷, 李伟平. 2000. 印度洋海温异常对西太副高的影响-大气中的两极热力适应. 气象学报, 58: 513‒522. Google Scholar

[4] 吴国雄, 刘屹岷. 2000. 热力适应、过流、频散和副高.I. 热力适应和过流和“过流”现象. 大气科学, 24: 433‒446. Google Scholar

[5] 吴国雄, 卓海峰, 王子谦, 刘屹岷. 2016. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发I: 青藏高原主体加热. 中国科学: 地球科学, 46: 1209‒1222. Google Scholar

[6] 叶笃正, 罗四维, 朱抱真. 1957. 西藏高原及其附近的流场结构和对流层大气的热量平衡. 气象学报, 28: 108‒121. Google Scholar

[7] 周秀骥, 赵平, 陈军明, 陈隆勋, 李维亮. 2009. 青藏高原热力作用对北半球气候影响的研究. 中国科学D 辑: 地球科学, 39: 1473‒1486. Google Scholar

[8] 竺夏英, 刘屹岷, 吴国雄. 2012. 夏季青藏高原多种地表感热通量资料的评估. 中国科学: 地球科学, 42: 1104‒1112. Google Scholar

[9] Chen P. Thermally forced stationary waves in a quasigeostrophic system. J Atmos Sci, 2001, 58: 1585-1594 CrossRef Google Scholar

[10] Chou M D, Suarez M J. 1994. An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech Memo, 104606: 85. Google Scholar

[11] Chou M D, Suarez M J, Ho C H, Yan M M H, Lee K T. Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J Clim, 1998, 11: 202-214 CrossRef Google Scholar

[12] Grell G A, Freitas S R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos Chem Phys, 2014, 14: 5233-5250 CrossRef ADS Google Scholar

[13] Held I M. 1983. Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. In: Hoskins B J, Pearce R P, eds. Large-Scale Dynamical Processes in the Atmosphere. London: Academic Press. 127–168. Google Scholar

[14] Holton J R, Gettelman A. Horizontal transport and the dehydration of the stratosphere. Geophys Res Lett, 2001, 28: 2799-2802 CrossRef ADS Google Scholar

[15] Holton J R, Haynes P H, McIntyre M E, Douglass A R, Rood R B, Pfister L. Stratosphere-troposphere exchange. Rev Geophys, 1995, 33: 403-439 CrossRef ADS Google Scholar

[16] Hong S Y, Lim J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol, 42: 129‒151. Google Scholar

[17] Hoskins B J, McIntyre M E, Robertson A W. On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc, 1985, 111: 877-946 CrossRef ADS Google Scholar

[18] Huffman G J, Adler R F, Bolvin D T, Gu G, Nelkin E J, Bowman K P, Hong Y, Stocker E F, Wolff D B. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol, 2007, 8: 38-55 CrossRef ADS Google Scholar

[19] Janjić Z I. The Step-Mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev, 1994, 122: 927-945 CrossRef Google Scholar

[20] Liu Y M, Bao Q, Duan Z A, Qian Z A, Wu G X. Recent progress in the impact of the Tibetan Plateau on climate in China. Adv Atmos Sci, 2007a, 24: 1060-1076 CrossRef ADS Google Scholar

[21] Liu Y M, Hoskins B J, Blackburn M. Impact of Tibetan orography and heating on the summer flow over Asia. J Met Soc Jpn, 2007b, 85B: 1-19 CrossRef Google Scholar

[22] Liu Y M, Wu G X, Liu H, Liu P. Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere. Clim Dyn, 2001, 17: 327-338 CrossRef ADS Google Scholar

[23] Liu Y M, Wu G X, Ren R C. Relationship between the subtropical anticyclone and diabatic heating. J Clim, 2004, 17: 682-698 CrossRef Google Scholar

[24] Liu Y M, Wu G X, Hong J L, Dong B W, Duan A M, Bao Q, Zhou L J. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Clim Dyn, 2012, 39: 1183-1195 CrossRef ADS Google Scholar

[25] Luo H B, Yanai M. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon Weather Rev, 1984, 112: 966-989 CrossRef Google Scholar

[26] Mlawer E J, Taubman S J, Brown P D, Iacono M J, Clough S A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res, 1997, 102: 16663-16682 CrossRef ADS Google Scholar

[27] Oleson K W, Dai Y J, Bonan G B, Bosilovich M, Dickinson R E. 2013. Technical description of the community land model (CLM), NCAR Technical Note, NCAR/TN-503+STR. Boulder: National Center for Atmospheric Research. Google Scholar

[28] Saha S, Moorthi S, Pan H L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y T, Chuang H Y, Juang H M H, Sela J, Iredell M, Treadon R, Kleist D, van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm J K, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C Z, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds R W, Rutledge G, Goldberg M. The NCEP climate forecast system reanalysis. Bull Amer Meteorol Soc, 2010, 91: 1015-1057 CrossRef ADS Google Scholar

[29] Solomon S, Daniel J S, Vernier J P, Dutton E G, Thomason L W. 2011. The persistently variable background stratospheric aerosol layer and global climate change. Science, 333: 866‒870. Google Scholar

[30] Wan Z. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens Environ, 2008, 112: 59-74 CrossRef Google Scholar

[31] Wu G X, He B, Liu Y M, Bao Q, Ren R C. Location and variation of the summertime upper-troposphere temperature maximum over South Asia. Clim Dyn, 2015, 45: 2757-2774 CrossRef ADS Google Scholar

[32] Wu G X, Liu Y M. Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys Res Lett, 2003, 30: 1201 CrossRef ADS Google Scholar

[33] Wu G X, Liu Y M, Dong B W, Liang X Y, Duan A M, Bao Q, Yu J J. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Clim Dyn, 2012a, 39: 1169-1181 CrossRef ADS Google Scholar

[34] Wu G X, Liu Y M, He B, Bao Q, Duan A M, Jin F F. Thermal controls on the Asian summer monsoon. Sci Rep, 2012b, 2: 404 CrossRef PubMed ADS Google Scholar

[35] Wu G X, Liu Y M, Wang T M, Wan R J, Liu X, Li W P, Wang Z Z, Zhang Q, Duan A M, Liang X Y. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrometeorol, 2007, 8: 770-789 CrossRef ADS Google Scholar

[36] Wu G X, Liu Y M, Zhu X Y, Li W P, Ren R C, Duan A M, Liang X Y. Multi-scale forcing and the formation of subtropical desert and monsoon. Ann Geophys, 2009, 27: 3631-3644 CrossRef ADS Google Scholar

[37] Yanai M, Wu G X. 2006. Effects of Tibetan Plateau. The Asian Monsoon. New York: Springer/Praxis Publishing. 787. Google Scholar

[38] Yanai M, Li C, Song Z. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian monsoon. J Meteorol Soc Jpn, 70: 319‒351. Google Scholar

[39] Zhang Q, Wu G X, Qian Y F. The bimodality of the 100 hPa South Asia high and its relationship to the climate anomaly over East Asia in summer. J Meteorol Soc Jpn, 2002, 80: 733-744 CrossRef Google Scholar

  • 图 1

    青藏高原伊朗高原的热力强迫以及南亚的水汽输送所构成的一个相互反馈的耦合系统(TIPS)示意图

  • 图 2

    基于CFSR再分析资料的夏季(6~8月)平均的(a)沿30°N的位势高度(等值线, gpm)和温度(阴影, K)的纬向偏差, 及用PV=2 PVU等值线表示的对流层顶(红粗实线)和(b)125-hPa层上风场(箭矢, m s−1)和位涡PV(等值线和阴影, PVU)的分布

  • 图 3

    WRF模式模拟区域及地形高度(a)、CTL试验模拟的夏季平均地表感热加热(b)、地表温度(d)和降水(f)以及卫星观测的地表温度(c)和降水(e)

  • 图 4

    各敏感试验模拟的夏季平均降水(阴影)850-hPa风场(矢量)

  • 图 5

    夏季有无伊朗高原表面感热加热试验模拟结果的差异(CTL-IP_NS)

  • 图 6

    夏季有无青藏高原表面感热加热试验模拟结果的差异(CTL-TP_NS)

  • 图 7

    夏季有无青藏-伊朗高原表面感热加热试验模拟结果的差异(CTL-TIP_NS)

  • 图 8

    模拟的夏季沿30°N的水汽(阴影)和环流(u, W×200)的经度-垂直剖面分布

  • 图9

    背景试验CTL与无高原感热试验的温度(阴影)、风场(矢量)300hPa((a), (c), (e))100hPa((b), (d), (f))之差异分布

  • 图 10

    再分析资料CFSR中夏季沿30°N的温度廓线(a)、温度垂直递减率(b)和温度纬向偏差廓线(c)

  • 图 11

    模式模拟的在青藏高原上空(37°N, 95°E)处的温度廓线(a)、温度垂直递减率(b)和背景试验CTL与高原无表面感热加热试验的温度差异廓线(c)

  • 表 1   试验设计详情

    试验名称

    试验详情

    CTL

    背景: 气候平均

    IP_NS

    伊朗高原主体上空(≥ 0.5km)处无地表感热加热

    TP_NS

    青藏高原主体(≥ 1.5km)处无地表感热加热

    TIP_NS

    伊朗高原主体和青藏高原主体处均无地表感热加热

  • 表 2   再分析资料和模拟的夏季亚洲副热带季风区图方框总水汽通量散度及有无高原感热试验中该区域总水汽通量散度的差异和该差异值占中总水汽通量散度的比例

    CFSR

    CTL

    CTL-IP_NS

    CTL-TP_NS

    CTL-TIP_NS

    水汽通量散度

    (×10−5kg m−2 s−1)

    –1.55

    –1.55

    –0.20

    –0.45

    –0.92

    有无感热试验的水汽通量散度差异与CTL的比值(%)

    12.9

    29.0

    59.4

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1