logo

SCIENTIA SINICA Terrae, Volume 47, Issue 4: 421-437(2017) https://doi.org/10.1360/N072017-00037

黄土高原见证季风和荒漠的由来

郭正堂1,2,3,*
More info
  • ReceivedFeb 13, 2017
  • AcceptedMar 6, 2017
  • PublishedMar 30, 2017

Abstract

在世界地图上, 华夏大地上的季风和荒漠可谓与众不同: 第一, 南北两半球的亚热带均以干旱环境为主(包括北非的撒哈拉沙漠、南非的纳米布沙漠、澳大利亚沙漠等), 而同纬度的我国江南地区则为降水充沛的湿润季风区; 第二, 我国西北大漠与中亚干旱区连为一体, 分布的纬度比其他干旱区要高得多; 第三, 虽然地球赤道两侧均为季风区, 但其他季风主要影响南北回归线之间的低纬地区, 只有东亚季风长驱直入, 不仅影响低纬地区, 而且可影响到40°N以北. 我国几代科学家的研究发现, 就在不久前的地质历史时期, 华夏的季风和荒漠并非如此: 当时江南处于干旱气候的控制之下, 季风只影响我国最南部地区, 在环境格局上完全与世界“接轨”. 今天特殊的东亚气候, 源于后来一系列复杂的经历; 而黄土高原正是其中渊源的一位可靠见证者. 华夏季风与荒漠不仅与华夏山水的其他成员(如青藏高原、长江、黄河、黄土高原、秦岭等)有着明确的“亲缘”关系, 而且依然相互作用, 影响着我们今天的生存环境.


Funded by

国家自然科学基金项目(41430531)


Acknowledgment

衷心感谢汪品先院士在本文写作过程中的指导. 图件准备过程中得到郝青振、张岩、杨帆和贺志霖的帮助, 在此一并致谢.


References

[1] 曹家欣, 李培英, 石宁. 1987. 山东庙岛群岛的黄土. 中国科学 B辑, 17: 1116–1123. Google Scholar

[2] 曹家欣. 2008. 第四纪古气候概论. 见: 曹家欣文集. 北京: 地质出版社. 54–109. Google Scholar

[3] 德日进, 杨钟健. 1930. 山西西部陕西北部蓬蒂纪后黄土期之地层观察. 农矿部直辖地质调查所. Google Scholar

[4] 董光荣, 王贵勇, 陈惠忠, 阎满存, 金炯, 王跃. 1995. 中国沙漠形成、演化与青藏高原隆升的关系. 中国青藏高原研究论文集. 北京: 气象出版社. 13–29. Google Scholar

[5] 郭正堂, Fedoroff N, 刘东生. 1993. 全新世与上次间冰期气候差异的古土壤记录. 第四纪研究, 13: 41–55. Google Scholar

[6] 黄镇国, 张伟强, 陈俊鸿, 刘瑞华, 何正翀. 1996. 中国南方红色风化壳. 北京: 海洋出版社. 312. Google Scholar

[7] 江新胜, 崔晓庄, 伍皓, 熊国庆, 卓皆文, 陆俊泽, 江卓斐. 2012. 青藏高原东缘古近纪沙漠及其对季风起源的启示. 沉积与特提斯地质, 32: 54–63. Google Scholar

[8] 李吉均. 1999. 青藏高原的地貌演化与亚洲季风. 海洋地质与第四纪地质, 19: 7–17. Google Scholar

[9] 刘东生, 郑绵平, 郭正堂. 1998. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性. 第四纪研究, 18: 194–204. Google Scholar

[10] 刘东生等. 1966. 黄土的物质成分和结构. 北京: 科学出版社. 132. Google Scholar

[11] 刘东生等. 1985. 黄土与环境. 北京: 科学出版社. 481. Google Scholar

[12] 刘进峰, 郭正堂, 郝青振, 彭淑贞, 乔彦松, 孙斌, 葛俊逸. 2005. 甘肃秦安糜子湾剖面中新世风尘堆积的磁性地层学研究. 第四纪研究, 25: 503–509. Google Scholar

[13] 孟庆任. 2017. 秦岭的由来. 中国科学: 地球科学, 47: 412–420. Google Scholar

[14] 乔彦松, 郭正堂, 郝青振, 吴文祥, 姜文英, 袁宝印, 张仲石, 魏建晶, 赵华. 2003. 皖南风尘堆积-土壤序列的磁性地层学研究及其古环境意义. 科学通报, 48: 1465–1469. Google Scholar

[15] 施雅风, 汤懋苍, 马玉贞. 1998. 青藏高原二期隆升与亚洲季风孕育关系探讨. 中国科学: 地球科学, 28: 263–271. Google Scholar

[16] 汪品先. 2005. 新生代亚洲形变与海陆相互作用. 地球科学, 30: 1–18. Google Scholar

[17] 汪品先. 2009. 全球季风的地质演变. 科学通报, 54: 535–556. Google Scholar

[18] 吴子荣, 袁宝印, 高福清. 1985. 洛川源黄土沉积的地质环境. 第四纪研究, 6: 137–148. Google Scholar

[19] 叶笃正. 1952. 西藏高原对于大气环流影响的季节变化. 气象学报, 23: 33–47. Google Scholar

[20] 袁宝印, 巴特尔, 崔久旭, 殷强. 1987. 黄土区沟谷发育与气候变化的关系(以洛川黄土塬区为例). 地理学报, 54: 328–337. Google Scholar

[21] 袁宝印, 郭正堂, 郝青振, 彭淑贞, 乔彦松, 吴海斌, 肖国桥, 葛俊逸, 孙斌, 周鑫, 尹秋珍, 梁美艳, 秦利, 刘恋, 姚政权, 刘东生. 2007. 天水-秦安一带中新世黄土堆积区沉积-地貌演化. 第四纪研究, 27: 161–171. Google Scholar

[22] 詹涛, 郭正堂, 吴海斌, 葛俊逸, 周鑫, 武春林, 曾方明. 2010. 华家岭山地中新世风成红土堆积与西部黄土高原地貌演化. 中国科学: 地球科学, 40: 1040-1047. Google Scholar

[23] 张林源. 1981. 青藏高原上升对我国第四纪环境演变的影响. 兰州大学学报, 17: 142–155. Google Scholar

[24] 郑洪波, 魏晓椿, 王平, 何梦颖, 罗超, 杨青. 2017. 长江的前世今生. 中国科学: 地球科学, 47: 385–393. Google Scholar

[25] 周淑贞. 2011. 气象学与气候学(第三版). 北京: 高等教育出版社. 260. Google Scholar

[26] 周廷儒. 1982. 古地理学. 北京: 北京师范大学出版社. 342. Google Scholar

[27] 朱显谟. 1965. 我国黄土性沉积物中的古土壤. 中国第四纪研究, 4: 9–19. Google Scholar

[28] An Z, Kutzbach J E, Prell W L, Porter S C. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene time. Nature, 2001, 411: 62-66 CrossRef PubMed Google Scholar

[29] Barckhausen U, Engels M, Franke D, Ladage S, Pubellier M. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Mar Pet Geol, 2014, 58: 599-611 CrossRef Google Scholar

[30] Boos W R, Kuang Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 2010, 463: 218-222 CrossRef PubMed ADS Google Scholar

[31] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia. J Geophys Res, 1993, 98: 6299-6328 CrossRef ADS Google Scholar

[32] Clift P D, Hodges K V, Heslop D, Hannigan R, van Long H, Calves G. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat Geosci, 2008, 1: 875-880 CrossRef ADS Google Scholar

[33] Clift P D, Plumb R A. 2008. The Asian Monsoon: Causes, History and Effects. Cambridge, Cambridge University Press. 266. Google Scholar

[34] Cohen K M, Finney S, Gibbard P L. 2015. International Chronostratigraphic Chart. International Commission on Stratigraphy. Google Scholar

[35] Ding Z L, Sun J M, Yang S L, Liu T S. Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau. Geophys Res Lett, 1998, 25: 1225-1228 CrossRef ADS Google Scholar

[36] Ding Z L, Xiong S F, Sun J M, Yang S L, Gu Z Y, Liu T S. Pedostratigraphy and paleomagnetism of a ∼7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 152: 49-66 CrossRef Google Scholar

[37] Ding Z, Yu Z, Rutter N W, Liu T. Towards an orbital time scale for Chinese loess deposits. Quat Sci Rev, 1994, 13: 39-70 CrossRef ADS Google Scholar

[38] Fluteau F, Ramstein G, Besse J. Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J Geophys Res, 1999, 104: 11995-12018 CrossRef ADS Google Scholar

[39] Ge J, Guo Z, Zhan T, Yao Z, Deng C, Oldfield F. Magnetostratigraphy of the Xihe loess-soil sequence and implication for late Neogene deformation of the West Qinling Mountains. Geophys J Int, 2012, 189: 1399-1408 CrossRef ADS Google Scholar

[40] Gornitz V. 2008. Encyclopedia of Paleoclimatology and Ancient Environments. Dordrecht: Springer Science & Business Media. 1049. Google Scholar

[41] Guo Z T, Ding Z L, Liu T S. 1996. Pedosedimentary events in loess of China and Quaternary climatic cycles. Chin Sci Bull, 41: 1189–1193. Google Scholar

[42] Guo Z T, Liu T S, An Z S. 1991. Genetic types of the Holocene soil and the Pleistocene paleosols in the Xifeng loess section in central China. Loess, Environment and Global Change. Beijing: Science Press. 93–111. Google Scholar

[43] Guo Z, Peng S, Hao Q, Biscaye P E, An Z, Liu T. Late Miocene-Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China. Glob Planet Change, 2004, 41: 135-145 CrossRef ADS Google Scholar

[44] Guo Z, Petit-Maire N, Kröpelin S. Holocene non-orbital climatic events in present-day arid areas of northern Africa and China. Glob Planet Change, 2000, 26: 97-103 CrossRef ADS Google Scholar

[45] Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 2002, 416: 159-163 CrossRef PubMed ADS Google Scholar

[46] Guo Z T, Sun B, Zhang Z S, Peng S Z, Xiao G Q, Ge J Y, Hao Q Z, Qiao Y S, Liang M Y, Liu J F, Yin Q Z, Wei J J. A major reorganization of Asian climate regime by the early Miocene. Clim Past Discuss, 2008, 4: 535-584 CrossRef Google Scholar

[47] Guo Z. World's roof regulates the earth system. Nat Sci Rev, 2015, 2: 394-394 CrossRef Google Scholar

[48] Halley E. 1686. A historical account of the trade winds and monsoons observable in the sea between and near the tropics with an attempt to assign the physical cause of the said wind. Philos T R Soc Lond, 16: 153–168. Google Scholar

[49] Hao Q Z, Guo Z T. 2004. Magnetostratigraphy of a late Miocene‐Pliocene loess‐soil sequence in the western Loess Plateau in China. Geophys Res Lett, 31: 165–198. Google Scholar

[50] Hao Q Z, Guo Z T. 2007. Magnetostratigraphy of an early‐middle Miocene loess‐soil sequence in the western Loess Plateau of China. Geophys Res Lett, 34: 529–538. Google Scholar

[51] Harrison T M, Copeland P, Kidd W S F, Yin A. Raising Tibet. Science, 1992, 255: 1663-1670 CrossRef PubMed ADS Google Scholar

[52] Herman F, Seward D, Valla P G, Carter A, Kohn B, Willett S D, Ehlers T A. Worldwide acceleration of mountain erosion under a cooling climate. Nature, 2013, 504: 423-426 CrossRef PubMed ADS Google Scholar

[53] Herold N, Huber M, Müller R D. 2011. Modeling the Miocene Climatic Optimum. Part I: Land and atmosphere. J Clim, 24: 6353–6372. Google Scholar

[54] Houghton J T. 1984. The Global Climate. Cambridge: Cambridge University Press. Google Scholar

[55] Jickells T D, An Z S, Andersen K K, Baker A R, Bergametti G, Brooks N, Cao J J, Boyd P W, Duce R A, Hunter K A, Kawahata H, Kubilay N, laRoche J, Liss P S, Mahowald N, Prospero J M, Ridgwell A J, Tegen I, Torres R. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 2005, 308: 67-71 CrossRef PubMed ADS Google Scholar

[56] Khin K, Sakai T, Zaw K. Neogene syn-tectonic sedimentation in the eastern margin of Arakan-Bengal basins, and its implications on for the Indian-Asian collision in western Myanmar. Gondwana Res, 2014, 26: 89-111 CrossRef Google Scholar

[57] Kroop D. 1991. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc ODP Sci Results. College Station, 117: 257–263. Google Scholar

[58] Kröpelin S, Verschuren D, Lezine A M, Eggermont H, Cocquyt C, Francus P, Cazet J P, Fagot M, Rumes B, Russell J M, Darius F, Conley D J, Schuster M, von Suchodoletz H, Engstrom D R. Climate-driven ecosystem succession in the Sahara: The past 6000 years. Science, 2008, 320: 765-768 CrossRef PubMed ADS Google Scholar

[59] Kukla G. Loess stratigraphy in central China. Quat Sci Rev, 1987, 6: 191-219 CrossRef ADS Google Scholar

[60] Kutzbach J E, Guetter P J, Ruddiman W F, Prell W L. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: Numerical experiments. J Geophys Res, 1989, 94: 18393-18407 CrossRef ADS Google Scholar

[61] Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc Natl Acad Sci USA, 2014, 111: 15296-15303 CrossRef PubMed ADS Google Scholar

[62] Li Q, Wang P, Zhao Q, Shao L, Zhong G, Tian J, Cheng X, Jian Z, Su X. A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea. Mar Geol, 2006, 230: 217-235 CrossRef Google Scholar

[63] Liang M Y, Guo Z T, Kahmann A J, Oldfield F. 2009. Geochemical characteristics of the Miocene eolian deposits in China: Their provenance and climate implications. Geochem Geophys Geosyst, 10: 2415–2440. Google Scholar

[64] Liu T, Ding Z. Chinese loess and the paleomonsoon. Annu Rev Earth Planet Sci, 1998, 26: 111-145 CrossRef ADS Google Scholar

[65] Liu T S, Guo Z T. 1997. Geological environments in China and global change. In: Selected Works of Liu Tungsheng. Beijing: Science Press. 192–202. Google Scholar

[66] Liu X D, Guo Q C, Guo Z T, Yin Z Y, Dong B W, Smith R. 2015a. Where were the monsoon regions and arid zones in Asia prior to the Tibetan Plateau uplift? Natl Sci Rev, 2: 403–416. Google Scholar

[67] Liu X, Sun H, Miao Y, Dong B, Yin Z Y. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment. Quat Sci Rev, 2015b, 116: 1-14 CrossRef ADS Google Scholar

[68] Liu X, Yin Z Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 183: 223-245 CrossRef Google Scholar

[69] Manabe S, Terpstra T B. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J Atmos Sci, 1974, 31: 3-42 CrossRef Google Scholar

[70] Martin J H. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography, 1990, 5: 1-13 CrossRef ADS Google Scholar

[71] Molnar P, England P. 1990. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature, 346: 29–34. Google Scholar

[72] Pécsi M. 1990. Loess is not just the accumulation of dust. Quat Int, 7: 1–21. Google Scholar

[73] Petit-Maire N, Guo Z T. 1997. Holocene paleoprecipitation over the present-day Sahara desert: Implications for the future. Episodes, 20: 232–234. Google Scholar

[74] Porter S C, An Z. Episodic gullying and paleomonsoon cycles on the Chinese Loess Plateau. Quat Res, 2005, 64: 234-241 CrossRef ADS Google Scholar

[75] Prell W L, Marvil R E, Luther M E. 1990. Variability in upwelling fields in the northwestern Indian Ocean 2. Data-model comparion at 9000 years BP. Paleoceanography, 5: 447–457. Google Scholar

[76] Pye K. 1987. Aeolian Dust and Dust Deposits. London: Academic Press. 340. Google Scholar

[77] Pye K. The nature, origin and accumulation of loess. Quat Sci Rev, 1995, 14: 653-667 CrossRef ADS Google Scholar

[78] Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 1989, 342: 163-166 CrossRef ADS Google Scholar

[79] Ramstein G, Fluteau F, Besse J, Joussaume S. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 1997, 386: 788-795 CrossRef ADS Google Scholar

[80] Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate. Nature, 1992, 359: 117-122 CrossRef ADS Google Scholar

[81] Rea D K, Janecek T R. Late Cenozoic changes in atmospheric circulation deduced from North Pacific eolian sediments. Mar Geol, 1982, 49: 149-167 CrossRef Google Scholar

[82] Rousseau D D, Kukla G, ZÖller L, Hradilova J. 1998. Early Weichselian dust storm layer at Achenheim in Alsace, France. Boreas, 27: 200–207. Google Scholar

[83] Ruddiman W F, Kutzbach J E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west. J Geophys Res, 1989, 94: 18409-18427 CrossRef ADS Google Scholar

[84] Ruddiman W F, Prell W L, Raymo M E. Late Cenozoic uplift in southern Asia and the American West: Rationale for general circulation modeling experiments. J Geophys Res, 1989, 94: 18379-18391 CrossRef ADS Google Scholar

[85] Ruddiman W F. 2008. Earth’s Climate: Past and Future. 2nd ed. New York: W H Freeman and Company. 388. Google Scholar

[86] Sima A, Kageyama M, Rousseau D D, Ramstein G, Balkanski Y, Antoine P, Hatté C. Modeling dust emission response to North Atlantic millennial-scale climate variations from the perspective of East European MIS 3 loess deposits. Clim Past, 2013, 9: 1385-1402 CrossRef ADS Google Scholar

[87] Sun D, An Z, Shaw J, Bloemendal J, Sun Y B. Magnetostratigraphy and palaeoclimatic significance of Late Tertiary aeolian sequences in the Chinese Loess Plateau. Geophys J Int, 1998, 134: 207-212 CrossRef ADS Google Scholar

[88] Sun X, Wang P. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 222: 181-222 CrossRef Google Scholar

[89] Tang H, Micheels A, Eronen J T, Ahrens B, Fortelius M. 2012. Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments. Clim Dyn, 40: 1531–1549. Google Scholar

[90] Trenberth K E, Stepaniak D P, Caron J M. The global monsoon as seen through the divergent atmospheric circulation. J Clim, 2000, 13: 3969-3993 CrossRef Google Scholar

[91] Wang B, Ding Q. Global monsoon: Dominant mode of annual variation in the tropics. Dyn Atmos Oceans, 2008, 44: 165-183 CrossRef ADS Google Scholar

[92] Wang P X, Wang B, Cheng H, Fasullo J, Guo Z T, Kiefer T, Liu Z Y. The global monsoon across timescales: Coherent variability of regional monsoons. Clim Past, 2014, 10: 2007-2052 CrossRef ADS Google Scholar

[93] Wang P. Neogene stratigraphy and paleoenvironments of China. Palaeogeogr Palaeoclimatol Palaeoecol, 1990, 77: 315-334 CrossRef Google Scholar

[94] Wu G X, Liu Y M, He B, Bao Q, Duan A M, Jin F F. 2012. Thermal controls on the Asian summer monsoon. Sci Rep, 2: 404, doi: 10.1038/srep00404. Google Scholar

[95] Xiao G Q, Guo Z T, Dupont-Nivet G, Lu H Y, Wu N Q, Ge J Y, Hao Q Z, Peng S Z, Li F J, Abels H A. 2012. Evidence for northeastern Tibetan Plateau uplift between 25 and 20 Ma in the sedimentary archive of the Xining Basin, Northwestern China. Earth Planet Sci Lett, 317–318: 185–195. Google Scholar

[96] Yin A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev, 2006, 76: 1-131 CrossRef ADS Google Scholar

[97] Zachos J, Pagani M, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686-693 CrossRef PubMed ADS Google Scholar

[98] Zhang P, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 2001, 410: 891-897 CrossRef PubMed Google Scholar

[99] Zhang Z, Flatøy F, Wang H, Bethke I, Bentsen M, Guo Z. Early Eocene Asian climate dominated by desert and steppe with limited monsoons. J Asian Earth Sci, 2012, 44: 24-35 CrossRef ADS Google Scholar

[100] Zhang Z S, Wang H J, Guo Z T, Jiang D B. Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China. Earth Planet Sci Lett, 2007a, 257: 622-634 CrossRef ADS Google Scholar

[101] Zhang Z S, Wang H J, Guo Z T, Jiang D B. 2007b. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeogr Palaeoclimatol Palaeoecol, 245: 317–331. Google Scholar

[102] Zheng H, Wei X, Tada R, Clift P D, Wang B, Jourdan F, Wang P, He M. Late Oligocene-early Miocene birth of the Taklimakan Desert. Proc Natl Acad Sci USA, 2015, 112: 7662-7667 CrossRef PubMed ADS Google Scholar

[103] Zheng H. Birth of the Yangtze River: Age and tectonic-geomorphic implications. Nat Sci Rev, 2015, 2: 438-453 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1