logo

SCIENTIA SINICA Terrae, Volume 49, Issue 8: 1278-1292(2019) https://doi.org/10.1360/N072018-00057

中亚东部晚全新世水文气候变化及可能成因

More info
  • ReceivedFeb 13, 2018
  • AcceptedJun 25, 2018
  • PublishedSep 11, 2018

Abstract

中亚东部水文气候变化对中纬大气环流非常敏感. 为了查明该地区水文气候的长期变化及其与大气环流的关系, 文章利用位于中天山深水湖泊——赛里木湖钻孔岩芯, 在137Cs、210Pb和AMS14C定年基础上, 对湖泊岩芯有机碳、有机氮、碳/氮比、碳酸盐含量和粒度等多指标进行了分析, 重建了晚全新世以来该地区水文气候变化历史. 结果显示, 晚全新世以来共发生了4次降水显著增加时期(4000~3780、3590~3210、2800~2160和890~280cal a BP)和1次降水微弱增加时期(1700~1370cal a BP), 这与中亚东部地区已有的降水/湿度记录相吻合, 表明晚全新世以来该地区具有相似的水文气候变化模式. 太阳活动减弱以及整个环北大西洋地区大气环流南移, 特别是中纬西风主要路径的南移, 可能是中亚东部地区晚全新世水文气候变化的最主要原因.此外, 赛里木湖研究结果还揭示了该地区最近100年降水显著增加, 但中亚地区未来水文气候如何变化仍需更多不同载体的深入研究.


Funded by

国家自然科学基金项目(41672169,41473120,41502171)

中国科学院青年创新促进会优秀会员项目(2012295)


Acknowledgment

感谢审稿人对论文修改提出的宝贵意见, 感谢新疆博州赛里木湖风景名胜区管理委员会在样品采集中提供的大力支持. 本工作属于中国科学院地球环境研究所“一带一路”研究计划的一部分.


References

[1] 陈发虎, 黄小忠, 张家武, Holmes J A, 陈建徽. 2007. 新疆博斯腾湖记录的亚洲内陆干旱区小冰期湿润气候研究. 中国科学D辑: 地球科学, 37: 77–85. Google Scholar

[2] 侯居峙, D’Andrea W D, 柳中晖. 2012. 湖泊碳库效应对青藏高原气候变化解释的影响探讨. 第四纪研究, 32: 441–453. Google Scholar

[3] 胡汝冀. 2004. 中国天山自然地理. 北京: 中国环境科学出版社. 278–284. Google Scholar

[4] 蒋庆丰, 季俊峰, 沈吉, Ryo M, 童国榜, 钱鹏, 任雪梅, 闫德智. 2013. 赛里木湖孢粉记录的亚洲内陆西风区全新世植被与气候变化. 中国科学: 地球科学, 43: 243–255. Google Scholar

[5] 刘禹, 安芷生, Hans W L, Deliang C, 宋慧明, 蔡秋芳, 孙军艳, 田华. 2009. 青藏高原中东部过去2485年以来温度变化的树轮记录. 中国科学D辑: 地球科学, 39: 166–176. Google Scholar

[6] 万国江. 1995. 137Cs及210Pbex方法湖泊沉积计年研究新进展. 地球科学进展, 10: 188–192. Google Scholar

[7] 王树基. 1978. 关于赛里木湖的形成、演变与第四纪古冰川作用的关系. 干旱区地理, 1: 47–55. Google Scholar

[8] 王苏民, 窦鸿身. 1998. 中国湖泊志. 北京: 科学出版社. 348–349. Google Scholar

[9] 王文志, 刘晓宏, 徐国保, 邵雪梅, 秦大河, 孙维贞, 安文玲, 曾小敏. 2013. 柴达木盆地树轮δ18O记录的过去1000年湿度变化. 科学通报, 58: 3458–3463. Google Scholar

[10] 吴敬禄, 曾海鳌, 马龙, 白瑞东. 2012. 新疆主要湖泊水资源及近期变化分析. 第四纪研究, 32: 142–150. Google Scholar

[11] 徐海, 刘晓燕, 安芷生, 侯昭华, 董吉宝, 刘斌. 2010. 青海湖现代沉积速率空间分布及沉积通量初步研究. 科学通报, 55: 384–390. Google Scholar

[12] 姚檀栋, 秦大河, 田立德, 焦克勤, 杨志红, 谢超, Thompson L G. 1996. 青藏高原2 ka来温度与降水变化——古里雅冰芯记录. 中国科学D辑: 地球科学, 26: 348–353. Google Scholar

[13] 张家武, 王君兰, 郭小燕, 李双, 何晶, 陈硕, 黄小忠, 陈发虎. 2010. 博斯腾湖全新世岩芯沉积物碳酸盐氧同位素气候意义. 第四纪研究, 30: 1078–1087. Google Scholar

[14] Aichner B, Feakins S J, Lee J E, Herzschuh U, Liu X. High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia. Clim Past, 2015, 11: 619-633 CrossRef ADS Google Scholar

[15] Aizen E M, Aizen V B, Melack J M, Nakamura T, Ohta T. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int J Climatol, 2001, 21: 535-556 CrossRef ADS Google Scholar

[16] Aizen V B, Aizen E M, Joswiak D R, Fujita K, Takeuchi N, Nikitin S A. Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann Glaciol, 2006, 43: 49-60 CrossRef Google Scholar

[17] Aizen V B, Aizen E M, Melack J M, Dozier J. Climatic and hydrologic changes in the Tien Shan, Central Asia. J Clim, 1997, 10: 1393-1404 CrossRef Google Scholar

[18] Anderson N J, Bennion H, Lotter A F. Lake eutrophication and its implications for organic carbon sequestration in Europe. Glob Change Biol, 2014, 20: 2741-2751 CrossRef PubMed ADS Google Scholar

[19] Appleby P G. 2001. Chronostratigraphic techniques in recent sediments. In: Last W M, Smol J P, eds. Tracking Environmental Change Using Lake Sediments: Basin Analysis, Coring, and Chronological Techniques. Dordrecht: Springer Netherlands. 171–203. Google Scholar

[20] Appleby P G, Oldfield F, Thompson R, Huttunen P, Tolonen K. 210Pb dating of annually laminated lake sediments from Finland. Nature, 1979, 280: 53-55 CrossRef ADS Google Scholar

[21] Bard E, Raisbeck G, Yiou F, Jouzel J. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B-Chem Phys Meteorol, 2000, 52: 985-992 CrossRef Google Scholar

[22] Bond G, Kromer B, Beer J, Muscheler R, Evans M N, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G. Persistent solar influence on North Atlantic climate during the Holocene. Science, 2001, 294: 2130-2136 CrossRef PubMed ADS Google Scholar

[23] Buckley B M, Anchukaitis K J, Penny D, Fletcher R, Cook E R, Sano M, Canh Nam L, Wichienkeeo A, That Minh T, Hong T M. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci USA, 2010, 107: 6748-6752 CrossRef PubMed ADS Google Scholar

[24] Chen F H, Chen J H, Holmes J, Boomer I, Austin P, Gates J B, Wang N L, Brooks S J, Zhang J W. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat Sci Rev, 2010, 29: 1055-1068 CrossRef ADS Google Scholar

[25] Chen F H, Yu Z C, Yang M L, Huang X, Zhao Y, Sato T, Birks H J B, Boomer I, Chena J, Ana C, Wunnemannj B. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 2008, 27: 351-364 CrossRef ADS Google Scholar

[26] Chen J H, Chen F H, Feng S, Huang W, Liu J B, Zhou A F. Hydroclimatic changes in China and surroundings during the Medieval climate anomaly and little ice age: Spatial patterns and possible mechanisms. Quat Sci Rev, 2015, 107: 98-111 CrossRef ADS Google Scholar

[27] Chen Y N, Li W H, H J, Fang G H, Li Z. Changes in central Asia’s water tower: Past, present and future. Sci Rep, 2016, 6: 35458 CrossRef PubMed ADS Google Scholar

[28] Cheng H, Zhang P Z, Spötl C, Edwards R L, Cai Y J, Zhang D Z, Sang W C, Tan M, An Z S. The climatic cyclicity in semiarid-arid central Asia over the past 500000 years. Geophys Res Lett, 2012, 39: L01705 CrossRef ADS Google Scholar

[29] Cook E R, Woodhouse C A, Eakin C M, Meko D M, Stahle D W. Long-term aridity changes in the western United States. Science, 2004, 306: 1015-1018 CrossRef PubMed ADS Google Scholar

[30] Deininger M, McDermott F, Mudelsee M, Werner M, Frank N, Mangini A. Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation. Clim Dyn, 2017, 49: 595-618 CrossRef ADS Google Scholar

[31] Diaz H F, Trigo R, Hughes M K, Mann M E, Xoplaki E, Barriopedro D. Spatial and temporal characteristics of climate in Medieval Times revisited. Bull Amer Meteorol Soc, 2011, 92: 1487-1500 CrossRef ADS Google Scholar

[32] Feng Z D, Wu H N, Zhang C J, Ran M, Sun A Z. Bioclimatic change of the past 2500 years within the Balkhash Basin, eastern Kazakhstan, Central Asia. Quat Int, 2013, 311: 63-70 CrossRef ADS Google Scholar

[33] Fontes J C, Gasse F, Gibert E. Holocene environmental changes in Lake Bangong basin (western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core. Palaeogeogr Palaeoclimatol Palaeoecol, 1996, 120: 25-47 CrossRef ADS Google Scholar

[34] Graham N E, Ammann C M, Fleitmann D, Cobb K M, Luterbacher J. Support for global climate reorganization during the “Medieval Climate Anomaly”. Clim Dyn, 2011, 37: 1217-1245 CrossRef ADS Google Scholar

[35] Gray L J, Beer J, Geller M, Haigh J D, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl G A, Shindell D, van Geel B, White W. Solar influences on climate. Rev Geophys, 2010, 48: RG4001 CrossRef ADS Google Scholar

[36] Heathcote A J, Anderson N J, Prairie Y T, Engstrom D R, del Giorgio P A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat Commun, 2015, 6: 10016 CrossRef PubMed ADS Google Scholar

[37] Herzschuh U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50000 years. Quat Sci Rev, 2006, 25: 163-178 CrossRef ADS Google Scholar

[38] Hodell D A, Brenner M, Curtis J H, Guilderson T. Solar forcing of drought frequency in the Maya lowlands. Science, 2001, 292: 1367-1370 CrossRef PubMed ADS Google Scholar

[39] Hodell D A, Curtis J H, Brenner M. Possible role of climate in the collapse of Classic Maya civilization. Nature, 1995, 375: 391-394 CrossRef ADS Google Scholar

[40] Hou J Z, D’Andrea W J, Liu Z H. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quat Sci Rev, 2012, 48: 67-79 CrossRef ADS Google Scholar

[41] Huang X T, Oberhansli H, von S H, Prasad S, Sorrel P, Plessen B, Mathis M, Usubaliev R. Hydrological changes in western Central Asia (Kyrgyzstan) during the Holocene as inferred from a palaeolimnological study in lake Son Kul. Quat Sci Rev, 2014, 103: 134-152 CrossRef ADS Google Scholar

[42] IPCC. 2007. Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press. 996. Google Scholar

[43] Klaminder J, Appleby P, Crook P, Renberg I. Post-deposition diffusion of 137Cs in lake sediment: Implications for radiocaesium dating. Sedimentology, 2012, 59: 2259-2267 CrossRef ADS Google Scholar

[44] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Sci Rev, 2006, 75: 29-57 CrossRef ADS Google Scholar

[45] Lan J H, Xu H, Sheng E G, Yu K K, Wu H X, Zhou K E, Yan D N, Ye Y D, Wang T L. 2018. Climate changes reconstructed from a glacial lake in High Central Asia over the past two millennia. Quat Int, 487: 43--53. Google Scholar

[46] Lauterbach S, Witt R, Plessen B, Dulski P, Prasad S, Mingram J, Gleixner G, Hettler-Riedel S, Stebich M, Schnetger B, Schwalb A, Schwarz A. Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years. Holocene, 2014, 24: 970-984 CrossRef Google Scholar

[47] Lei Y B, Tian L D, Bird B W, Hou J Z, Ding L, Oimahmadov I, Gadoev M. A 2540-year record of moisture variations derived from lacustrine sediment (Sasikul Lake) on the Pamir Plateau. Holocene, 2014, 24: 761-770 CrossRef Google Scholar

[48] Li X Q, Zhao K L, Dodson J, Zhou X Y. Moisture dynamics in central Asia for the last 15 kyr: New evidence from Yili Valley, Xinjiang, NW China. Quat Sci Rev, 2011, 30: 3457-3466 CrossRef ADS Google Scholar

[49] Li Y, Qiang M R, Zhang J W, Huang X Z, Zhou A F, Chen J H, Wang G G, Zhao Y. Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, Northwestern China. Quat Int, 2017, 452: 91-101 CrossRef ADS Google Scholar

[50] Liu K, Yao Z, Thompson L G. A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau. Geology, 1998, 26: 135 CrossRef Google Scholar

[51] Liu W, Wu J, Ma L, Zeng H. A 200-year sediment record of environmental change from Lake Sayram, Tianshan Mountains in China. GFF, 2014, 136: 548-555 CrossRef Google Scholar

[52] Liu W, Wu J L, Ma L, Zeng H A. Wet climate during the ‘Little Ice Age’ in the arid Tarim Basin, northwestern China. Holocene, 2011, 21: 409-416 CrossRef Google Scholar

[53] Liu X Q, Dong H L, Yang X D, Herzschuh U, Zhang E L, Stuut J B W, Wang Y B. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau. Earth Planet Sci Lett, 2009, 280: 276-284 CrossRef ADS Google Scholar

[54] Liu X Q, Herzschuh U, Wang Y B, Kuhn G, Yu Z T. Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records. Geophys Res Lett, 2014, 41: 6265-6273 CrossRef ADS Google Scholar

[55] Long H, Shen J, Chen J, Tsukamoto S, Yang L, Cheng H, Frechen M. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China. Quat Sci Rev, 2017, 174: 13-32 CrossRef ADS Google Scholar

[56] Ma L, Wu J, Yu H, Haiao Z, Abuduwaili J. The medieval warm period and the little ice age from a sediment record of Lake Ebinur, northwest China. Boreas, 2011, 40: 518-524 CrossRef Google Scholar

[57] Meyers P A. Impacts of late Quaternary fluctuations in water level on the accumulation of sedimentary organic matter in Walker Lake, Nevada. Palaeogeogr Palaeoclimatol Palaeoecol, 1990, 78: 229-240 CrossRef ADS Google Scholar

[58] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol, 1994, 114: 289-302 CrossRef ADS Google Scholar

[59] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem, 1997, 27: 213-250 CrossRef Google Scholar

[60] Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Org Geochem, 2003, 34: 261-289 CrossRef Google Scholar

[61] Meyers P A, Ishiwatari R. Lacustrine organic geochemistry—An overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem, 1993, 20: 867-900 CrossRef Google Scholar

[62] Meyers P A, Teranes J L. 2001. Sediment organic matter. In: Last W M, Smol J P, eds. Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods. Netherlands: Kluwer Academic Publishers. 239–240. Google Scholar

[63] Mischke S, Wunnemann B. The Holocene salinity history of Bosten Lake (Xinjiang, China) inferred from ostracod species assemblages and shell chemistry: Possible palaeoclimatic implications. Quat Int, 2006, 154-155: 100-112 CrossRef ADS Google Scholar

[64] Moffa-Sánchez P, Born A, Hall I R, Thornalley D J R, Barker S. Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nat Geosci, 2014, 7: 275-278 CrossRef ADS Google Scholar

[65] Muller A, Mathesius U. 1999. The palaeoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary C-org/N ratios as source indicators of organic matter. Palaeogeogr Palaeoclim Palaeoeco,145: 1–16. Google Scholar

[66] Olsen J, Anderson N J, Knudsen M F. Variability of the North Atlantic oscillation over the past 5200 years. Nat Geosci, 2012, 5: 808-812 CrossRef ADS Google Scholar

[67] Orme L C, Charman D J, Reinhardt L, Jones R T, Mitchell F J G, Stefanini B S, Barkwith A, Ellis M A, Grosvenor M. Past changes in the North Atlantic storm track driven by insolation and sea-ice forcing. Geology, 2017, 45: 335-338 CrossRef ADS Google Scholar

[68] Pederson N, Hessl A E, Baatarbileg N, Anchukaitis K J, Di Cosmo N. Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proc Natl Acad Sci USA, 2014, 111: 4375-4379 CrossRef PubMed ADS Google Scholar

[69] Peng Y J, Xiao J, Nakamura T, Liu B L, Inouchi Y. Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China. Earth Planet Sci Lett, 2005, 233: 467-479 CrossRef ADS Google Scholar

[70] Pennington W, Tutin T G, Cambray R S, Fisher E M. Observations on lake sediments using fallout 137Cs as a tracer. Nature, 1973, 242: 324-326 CrossRef ADS Google Scholar

[71] Putnam A E, Putnam D E, Andreu-Hayles L, Cook E R, Palmer J G, Clark E H, Wang C, Chen F, Denton G H, Boyle D P, Bassett S D, Birkel S D, Martin-Fernandez J, Hajdas I, Southon J, Garner C B, Cheng H, Broecker W S. Little Ice Age wetting of interior Asian deserts and the rise of the Mongol Empire. Quat Sci Rev, 2016, 131: 33-50 CrossRef ADS Google Scholar

[72] Putyrskaya V, Klemt E, Röllin S. Migration of 137Cs in tributaries, lake water and sediment of Lago Maggiore (Italy, Switzerland)—Analysis and comparison with Lago di Lugano and other lakes. J Environ Radioact, 2009, 100: 35-48 CrossRef PubMed Google Scholar

[73] Reimer P J, Baillie M G L, Bard E, Bayliss A, Warren Beck J, Bertrand C J H, Blackwell P G, Buck C E, Burr G S, Cutler K B, Damon P E, Lawrence Edwards R, Fairbanks R G, Friedrich M, Guilderson T P, Hogg A G, Hughen K A, Kromer B, McAffmac G, Manning S, Bronk Ramsey C, Reimer R W, Remmele S, Southon J R, Stuiver M, Talamo S, Taylor F W, van der Plicht J, Weyhenmeyer C E. Intcal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, 2004, 46: 1029-1058 CrossRef Google Scholar

[74] Reimer P J, Baillie M G L, Bard E, Bayliss A, Beck J W, Blackwell P G, Bronk Ramsey C, Buck C E, Burr G S, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Hajdas I, Heaton T J, Hogg A G, Hughen K A, Kaiser K F, Kromer B, McCormac F G, Manning S W, Reimer R W, Richards D A, Southon J R, Talamo S, Turney C S M, van der Plicht J, Weyhenmeyer C E. Intcal09 and marine09 radiocarbon age calibration curves, 0–50000 years cal BP. Radiocarbon, 2009, 51: 1111-1150 CrossRef Google Scholar

[75] Rhodes T E, Gasse F, Lin R, Fontes J C, Wei K, Bertrand P, Gibert E, Mélières F, Tucholka P, Wang Z, Cheng Z Y. A late Pleistocene-Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, western China). Palaeogeogr Palaeoclimatol Palaeoecol, 1996, 120: 105-121 CrossRef ADS Google Scholar

[76] Robbins J A, Edgington D N. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta, 1975, 39: 285-304 CrossRef ADS Google Scholar

[77] Rudaya N, Tarasov P, Dorofeyuk N, Solovieva N, Kalugin I, Andreev A, Daryin A, Diekmann B, Riedel F, Tserendash N, Wagner M. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: A step towards better understanding climate dynamics in Central Asia. Quat Sci Rev, 2009, 28: 540-554 CrossRef ADS Google Scholar

[78] Sanchez-Cabeza J A, Ruiz-Fernández A C. 210Pb sediment radiochronology: An integrated formulation and classification of dating models. Geochim Cosmochim Acta, 2012, 82: 183-200 CrossRef ADS Google Scholar

[79] Schurer A P, Tett S F B, Hegerl G C. Small influence of solar variability on climate over the past millennium. Nat Geosci, 2014, 7: 104-108 CrossRef ADS Google Scholar

[80] Seong Y B, Owen L A, Yi C, Finkel R C, Schoenbohm L. Geomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan. Geomorphology, 2009, 103: 227-250 CrossRef ADS Google Scholar

[81] Sha L, Jiang H, Seidenkrantz M S, Knudsen K L, Olsen J, Kuijpers A, Liu Y. A diatom-based sea-ice reconstruction for the Vaigat Strait (Disko Bugt, West Greenland) over the last 5000 yr. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 403: 66-79 CrossRef Google Scholar

[82] Sha L, Jiang H, Seidenkrantz M S, Muscheler R, Zhang X, Knudsen M F, Olsen J, Knudsen K L, Zhang W. Solar forcing as an important trigger for West Greenland sea-ice variability over the last millennium. Quat Sci Rev, 2016, 131: 148-156 CrossRef ADS Google Scholar

[83] Sigl M, Winstrup M, McConnell J R, Welten K C, Plunkett G, Ludlow F, Büntgen U, Caffee M, Chellman N, Dahl-Jensen D, Fischer H, Kipfstuhl S, Kostick C, Maselli O J, Mekhaldi F, Mulvaney R, Muscheler R, Pasteris D R, Pilcher J R, Salzer M, Schüpbach S, Steffensen J P, Vinther B M, Woodruff T E. Timing and climate forcing of volcanic eruptions for the past 2500 years. Nature, 2015, 523: 543-549 CrossRef PubMed ADS Google Scholar

[84] Song M, Zhou A F, Zhang X N, Zhao C, He Y X, Yang W Q, Liu W G, Li S H, Liu Z H. Solar imprints on Asian inland moisture fluctuations over the last millennium. Holocene, 2015, 25: 1935-1943 CrossRef Google Scholar

[85] Stuiver M, Reimer P J. Extended 14C data base and revised calib 3.0 14C age calibration program. Radiocarbon, 1993, 35: 215-230 CrossRef Google Scholar

[86] Stuiver M, Reimer P J, Bard E, Beck J W, Burr G S, Hughen K A, Kromer B, McCormac G, Van Der Plicht J, Spurk M. INTCAL98 radiocarbon age calibration, 24000–0 cal BP. Radiocarbon, 1998, 40: 1041-1083 CrossRef Google Scholar

[87] Sun Y B, Clemens S C, Morrill C, Lin X P, Wang X L, An Z S. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat Geosci, 2011, 5: 46-49 CrossRef ADS Google Scholar

[88] Sun Y B, Kutzbach J, An Z S, Clemens S, Liu Z Y, Liu W G, Liu X D, Shi Z G, Zheng W P, Liang L J, Yan Y, Li Y. Astronomical and glacial forcing of East Asian summer monsoon variability. Quat Sci Rev, 2015, 115: 132-142 CrossRef ADS Google Scholar

[89] Swingedouw D, Terray L, Cassou C, Voldoire A, Salas-Mélia D, Servonnat J. Natural forcing of climate during the last millennium: Fingerprint of solar variability. Clim Dyn, 2011, 36: 1349-1364 CrossRef ADS Google Scholar

[90] Talbot M R, Johannessen T. A high resolution palaeoclimatic record for the last 27500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett, 1992, 110: 23-37 CrossRef ADS Google Scholar

[91] Tan L C, Cai Y J, An Z S, Cheng H, Shen C C, Breitenbach S F M, Gao Y L, Edwards R L, Zhang H W, Du Y J. A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years. Sci Rep, 2015, 5: 12284 CrossRef PubMed ADS Google Scholar

[92] Thiéblemont R, Matthes K, Omrani N E, Kodera K, Hansen F. Solar forcing synchronizes decadal North Atlantic climate variability. Nat Commun, 2015, 6: 8268 CrossRef PubMed ADS Google Scholar

[93] Thompson L G, Yao T, Davis M E, Henderson K A, MosleyThompson E, Lin P N, Beer J, Synal H A, ColeDai J, Bolzan J F. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 1997, 276: 1821-1825 CrossRef Google Scholar

[94] Trouet V, Esper J, Graham N E, Baker A, Scourse J D, Frank D C. Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science, 2009, 324: 78-80 CrossRef PubMed ADS Google Scholar

[95] Wang W, Feng Z D, Ran M, Zhang C J. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-central Asia. Quat Int, 2013, 311: 54-62 CrossRef ADS Google Scholar

[96] Wieland E, Santschi P H, Höhener P, Sturm M. Scavenging of chernobyl 137Cs and natural 210Pb in Lake Sempach, Switzerland. Geochim Cosmochim Acta, 1993, 57: 2959-2979 CrossRef ADS Google Scholar

[97] Wirth S B, Glur L, Gilli A, Anselmetti F S. Holocene flood frequency across the Central Alps-solar forcing and evidence for variations in North Atlantic atmospheric circulation. Quat Sci Rev, 2013, 80: 112-128 CrossRef ADS Google Scholar

[98] Wittkop C A, Teranes J L, Dean W E, Guilderson T P. A lacustrine carbonate record of Holocene seasonality and climate. Geology, 2009, 37: 695-698 CrossRef ADS Google Scholar

[99] Wolff C, Plessen B, Dudashvilli A S, Breitenbach S F, Cheng H, Edwards L R, Strecker M R. Precipitation evolution of Central Asia during the last 5000 years. Holocene, 2017, 27: 142-154 CrossRef Google Scholar

[100] Xiao J L, Fan J W, Zhai D Y, Wen R L, Qin X G. Testing the model for linking grain-size component to lake level status of modern clastic lakes. Quat Int, 2015, 355: 34-43 CrossRef ADS Google Scholar

[101] Xiao J L, Fan J W, Zhou L, Zhai D Y, Wen R L, Qin X G. A model for linking grain-size component to lake level status of a modern clastic lake. J Asian Earth Sci, 2013, 69: 149-158 CrossRef ADS Google Scholar

[102] Xiao J L, Chang Z, Si B, Qin X, Itoh S, Lomtatidze Z. Partitioning of the grain-size components of Dali Lake core sediments: Evidence for lake-level changes during the Holocene. J Paleolimnol, 2009, 42: 249-260 CrossRef ADS Google Scholar

[103] Xiao J L, Si B, Zhai D Y, Itoh S, Lomtatidze Z. Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. J Paleolimnol, 2008, 40: 519-528 CrossRef ADS Google Scholar

[104] Xiao J L, Wu J, Si B, Liang W, Nakamura T, Liu B, Inouchi Y. Holocene climate changes in the monsoon/arid transition reflected by carbon concentration in Daihai Lake of Inner Mongolia. Holocene, 2006, 16: 551-560 CrossRef Google Scholar

[105] Xu H, Ai L, Tan L, An Z. Geochronology of a surface core in the northern basin of Lake Qinghai: Evidence from 210Pb and 137Cs radionuclides. Chin J Geochem, 2006a, 25: 301-306 CrossRef Google Scholar

[106] Xu H, Ai L, Tan L, An Z. Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications. Chem Geol, 2006b, 235: 262-275 CrossRef ADS Google Scholar

[107] Xu H, Lan J, Liu B, Sheng E, Yeager K M. Modern carbon burial in Lake Qinghai, China. Appl Geochem, 2013, 39: 150-155 CrossRef ADS Google Scholar

[108] Xu H, Liu X Y, Hou Z H. Temperature variations at Lake Qinghai on decadal scales and the possible relation to solar activities. J Atmos Sol-Terrestrial Phys, 2008, 70: 138-144 CrossRef ADS Google Scholar

[109] Xu H, Zhou X Y, Lan J H, Liu B, Sheng E G, Yu K K, Cheng P, Wu F, Hong B, Yeager K M, Xu S. Late Holocene Indian summer monsoon variations recorded at Lake Erhai, Southwestern China. Quat Res, 2015, 83: 307-314 CrossRef ADS Google Scholar

[110] Yan H, Sun L, Wang Y, Huang W, Qiu S, Yang C. A record of the Southern Oscillation Index for the past 2000 years from precipitation proxies. Nat Geosci, 2011, 4: 611-614 CrossRef ADS Google Scholar

[111] Yan H, Wei W, Soon W, An Z, Zhou W, Liu Z, Wang Y, Carter R M. Dynamics of the intertropical convergence zone over the western Pacific during the Little Ice Age. Nat Geosci, 2015, 8: 315-320 CrossRef ADS Google Scholar

[112] Yang B, Wang J, Brauning A, Dong Z, Esper J. Late Holocene climatic and environmental changes in arid central Asia. Quat Int, 2009, 194: 68-78 CrossRef ADS Google Scholar

[113] Yu K, Xu H, Lan J, Sheng E, Liu B, Wu H, Tan L, Yeager K M. Climate change and soil erosion in a small alpine lake basin on the Loess Plateau, China. Earth Surf Process Land, 2017, 42: 1238-1247 CrossRef ADS Google Scholar

[114] Yu S Y, Cheng P, Hou Z F. A caveat on radiocarbon dating of organic-poor bulk lacustrine sediments in arid China. Radiocarbon, 2014, 56: 127-141 CrossRef Google Scholar

[115] Zhang C, Feng Z, Yang Q, Gou X, Sun F. Holocene environmental variations recorded by organic-related and carbonate-related proxies of the lacustrine sediments from Bosten Lake, northwestern China. Holocene, 2010, 20: 363-373 CrossRef Google Scholar

[116] Zhang P Z, Cheng H, Edwards R L, Chen F H, Wang Y J, Yang X L, Liu J, Tan M, Wang X F, Liu J H, An C L, Dai Z B, Zhou J, Zhang D Z, Jia J H, Jin L Y, Johnson K R. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 2008, 322: 940-942 CrossRef PubMed ADS Google Scholar

[117] Zhao K L, Li X Q, Dodson J, Atahan P, Zhou X Y, Bertuch F. Climatic variations over the last 4000 cal yr BP in the western margin of the Tarim Basin, Xinjiang, reconstructed from pollen data. Palaeogeogr Palaeoclimatol Palaeoecol, 2012, 321-322: 16-23 CrossRef Google Scholar

  • 图 1

    研究区概况

  • 图 2

    赛里木湖沉积物年代学模型

  • 图 3

    赛里木湖SLM13-2-1孔多指标记录的气候变化

  • 图 4

    赛里木湖记录的降水变化与中亚东部地区对比

  • 图 5

    赛里木湖记录的降水变化与北大西洋涛动及太阳活动

  • 表 1   赛里木湖全岩样品年代

    加速质谱中心编号

    样品编号

    深度

    (cm)

    质量深度

    (g cm−2)

    未校正的14C年龄±误差

    (a BP)

    校正后的14C年龄, 1σ (cal a BP)

    碳库效应(a)

    137Cs年龄

    (AD)

    扣除1073年碳库效应后的14C年龄

    (cal a BP)

    XA14624

    SLML13-2-1-4

    2

    0.42

    1106±25

    1010

    1073

    1975

     

    XA11869

    SLML13-2-1-5

    2.5

    0.54

    1164±24

    1090

    1964

     

    XA14625

    SLML13-2-1-6

    3

    0.65

    1229±30

    1161

    1954

     

    XA12326

    SLML13-2-1-40

    20

    3.95

    1456±27

    1343

    256

    XA12327

    SLML13-2-1-80

    40

    8.68

    1982±35

    1933

    846

    XA12328

    SLML13-2-1-101

    51

    11.43

    2371±27

    2389

    1302

    XA11870

    SLML13-2-1-116

    66

    15.69

    3250±27

    3473

    2386

    XA13271

    SLML13-2-1-134

    84

    21.57

    3584±28

    3887

    2800

    XA13272

    SLML13-2-1-159

    110

    31.16

    4338±32

    4906

    3819

    XA11871

    SLML13-2-1-170

    121

    35.90

    4457±26

    5136

    4049

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1