logo

SCIENTIA SINICA Terrae, https://doi.org/10.1360/N072018-00184

岩石裂隙决定喀斯特关键带地表木本与草本植物覆盖

More info
  • ReceivedJul 2, 2018
  • AcceptedJan 18, 2019
  • PublishedMar 7, 2019

Abstract

地球关键带研究将地表植被组成和功能与岩石层的特性联系起来, 为研究喀斯特地区特殊的岩石和土壤条件如何影响地表植被提供了新的思路. 文章基于贵州中部喀斯特关键带白云岩和石灰岩分布区岩石、土壤和植被调查结果, 发现木本植物覆盖度随宽度1mm以上的裂隙数目增多而线性增加, 而草本植物覆盖度则呈相反的趋势(p<0.01). 白云岩分布区由于岩性致密、裂隙不发育、土层厚度一般在20cm以内, 适合浅根系的草本植物分布. 石灰岩分布区由于裂隙发育、土壤分布深、树木的深根系分布在裂隙中, 植被组成和结构复杂. 基于2001~2010年MODIS遥感数据获取的每16天一个时相的归一化植被指数(NDVI)和年净第一性生产力(NPP)结果进一步表明, 石灰岩分布区各时相NDVI总体显著高于白云岩分布区, 但多年平均NPP则相反. 本文结果表明, 在喀斯特关键带, 岩性决定土壤的结构和分布, 进而决定地上植被木本植物和草本植物的覆盖. 尽管石灰岩地区土壤量可能比白云岩地区偏低, 但发达的裂隙结构更适合深根系的树木生长, 植被活动强. 当前喀斯特地区石漠化治理需要充分考虑地球关键带岩石-土壤-植被-大气相互作用, 提出适合不同岩性的植被恢复措施.


Funded by

国家自然科学基金项目(41571130044,41325002)

高等学校学科创新引智计划项目(B14001)

北京大学本科生拔尖人才培养计划项目


Acknowledgment

本文野外调查得到了中国科学院普定喀斯特生态系统观测研究站的大力支持, 谨此致谢.


References

[1] 杜雪莲, 王世杰, 罗绪. 2009. 黔中喀斯特石漠化区不同土壤类型对常见植物叶片δ13C值的影响. 环境科学, 35: 3587–3594. Google Scholar

[2] 黄威廉, 屠玉鳞, 杨龙. 1988. 贵州植被. 贵阳: 贵州人民出版社. Google Scholar

[3] 刘玉国, 刘长成, 魏雅芬, 刘永刚, 郭柯. 2011. 贵州省普定县不同植被演替阶段的物种组成与群落结构特征. 植物生态学报, 35: 1009–1018. Google Scholar

[4] 马丽芳. 2002. 中国地质图集. 北京: 地质出版社. Google Scholar

[5] 普定县地方志编纂委员会. 1999. 普定县志. 贵阳: 贵州人民出版社. Google Scholar

[6] 宋同清, 彭晚霞, 曾馥平, 王克林, 覃文更, 谭卫宁, 刘璐, 杜虎, 鹿士杨. 2010. 木论喀斯特峰丛洼地森林群落空间格局及环境解释. 植物生态学报, 34: 298–308. Google Scholar

[7] 杨成, 刘丛强, 宋照亮, 刘占民, 郑厚义. 2008. 贵州喀斯特山区植物土壤C、N、S的分布特征. 北京林业大学学报, 30: 45–51. Google Scholar

[8] 尹亮, 崔明, 周金星, 李忠武, 黄斌, 方健梅. 2013. 岩溶高原地区小流域土壤厚度的空间变异特征. 中国水土保持科学, 11: 51–58. Google Scholar

[9] 喻理飞, 朱守谦, 叶镜中. 2002. 喀斯特森林不同种组的耐旱适应性. 南京林业大学学报(自然科学版), 26: 19–22. Google Scholar

[10] 朱守谦. 1997. 喀斯特森林生态研究. 贵阳: 贵州科技出版社. Google Scholar

[11] Bornyasz M A, Graham R C, Allen M F. Ectomycorrhizae in a soil-weathered granitic bedrock regolith: Linking matrix resources to plants. Geoderma, 2005, 126: 141-160 CrossRef ADS Google Scholar

[12] Brantley S L, Goldhaber M B, Ragnarsdottir K V. Crossing disciplines and scales to understand the critical zone. Elements, 2007, 3: 307-314 CrossRef Google Scholar

[13] Bucker P K, Grapes R. 2011. Metamorphism of Dolomites and Limestones. Berlin, Heidelberg: Springer. Google Scholar

[14] Canadell J, Jackson R B, Ehleringer J B, Mooney H A, Sala O E, Schulze E D. Maximum rooting depth of vegetation types at the global scale. Oecologia, 1996, 108: 583-595 CrossRef PubMed ADS Google Scholar

[15] Du H, Peng W X, Song T Q, Zeng F P, Wang K L, Song M, Zhang H. Spatial pattern of woody plants and their environmental interpretation in the karst forest of southwest China. Plant Biosystems, 2015, 149: 121-130 CrossRef Google Scholar

[16] Guo L, Lin H. 2016. Critical zone research and observatories: Current status and future perspectives. Vadose Zone J, 15: 1–14. Google Scholar

[17] Hahm W J, Riebe C S, Lukens C E, Araki S. Bedrock composition regulates mountain ecosystems and landscape evolution. Proc Natl Acad Sci USA, 2014, 111: 3338-3343 CrossRef PubMed ADS Google Scholar

[18] Holbrook W S, Riebe C S, Elwaseif M, Hayes J L, Basler-Reeder K, Harry D L, Malazian A, Dosseto A, Hartsough P C, Hopmans J W. Geophysical constraints on deep weathering and water storage potential in the Southern Sierra Critical Zone Observatory. Earth Surf Process Landf, 2014, 39: 366-380 CrossRef ADS Google Scholar

[19] Jiang Z C, Lian Y Q, Qin X Q. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci Rev, 2014, 132: 1-12 CrossRef ADS Google Scholar

[20] Kuzyakov Y, Xu X L. Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytol, 2013, 198: 656-669 CrossRef PubMed Google Scholar

[21] Lin H. 2010. Earth’s Critical Zone and hydropedology: Concepts, characteristics, and advances. Hydrol Earth Syst Sci, 14: 25–45. Google Scholar

[22] Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature, 2001, 412: 72-76 CrossRef PubMed Google Scholar

[23] National Research Council (NRC). 2001. Basic Research Opportunities in Earth Science. Washington D C: National Academy Press. Google Scholar

[24] Rempe D M, Dietrich W E. A bottom-up control on fresh-bedrock topography under landscapes. Proc Natl Acad Sci USA, 2014, 111: 6576-6581 CrossRef PubMed ADS Google Scholar

[25] Rempe D M, Dietrich W E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc Natl Acad Sci USA, 2018, 115: 2664-2669 CrossRef PubMed ADS Google Scholar

[26] Richter D B, Yaalon D H. “The changing model of soil” revisited. Soil Sci Soc Am J, 2012, 76: 766-778 CrossRef ADS Google Scholar

[27] Richter D B, Billings S A. ‘One physical system’: Tansley’s ecosystem as Earth’s critical zone. New Phytol, 2015, 206: 900-912 CrossRef PubMed Google Scholar

[28] Roering J J, Marshall J, Booth A M, Mort M, Jin Q. Evidence for biotic controls on topography and soil production. Earth Planet Sci Lett, 2010, 298: 183-190 CrossRef ADS Google Scholar

[29] Schultz J, Jordan I, Jordan D. 1995. The Ecozones of the World: The Ecological Divisions of the Geosphere. Berlin, Heidelberg: Springer. Google Scholar

[30] Schenk H J, Jackson R B. 2005. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126: 129–140. Google Scholar

[31] Sweeting M M. 2012. Karst in China: Its Geomorphology and Environment. Berlin, New York: Springer. Google Scholar

[32] Tong X, Brandt M, Yue Y, Horion S, Wang K, Keersmaecker W D, Tian F, Schurgers G, Xiao X, Luo Y, Chen C, Myneni R, Shi Z, Chen H, Fensholt R. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat Sustain, 2018, 1: 44-50 CrossRef Google Scholar

[33] Yue Y M, Zhang B, Wang K L, Liu B, Li R, Yang Q Q, Zhang M Y. Spectral indices for estimating ecological indicators of karst rocky desertification. Int J Remote Sens, 2010a, 31: 2115-2122 CrossRef Google Scholar

[34] Yue Y M, Wang K L, Zhang B, Chen Z X, Jiao Q J, Liu B, Chen H S. Exploring the relationship between vegetation spectra and eco-geo-environmental conditions in karst region, Southwest China. Environ Monit Assess, 2010b, 160: 157-168 CrossRef PubMed Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1