logo

SCIENTIA SINICA Terrae, Volume 49, Issue 7: 1059-1081(2019) https://doi.org/10.1360/N072018-00273

大陆漂移高原隆升与新生代亚--澳洲季风区和干旱区演化

More info
  • ReceivedOct 6, 2018
  • AcceptedJan 30, 2019
  • PublishedMar 27, 2019

Abstract

亚-非-澳洲季风区和干旱区的面积约占这三大洲陆地总面积的60%以上. 基于新生代以来亚-非-澳洲季风和干旱环境以及东半球海陆分布和青藏高原等地形显著变化的地质事实, 利用全球海-气耦合模式开展新生代5个特征地质时期气候模拟试验, 系统探讨了新生代亚-非-澳洲季风区和干旱区形成演化及其受大陆漂移和高原隆升的影响. 结果表明, 亚-非-澳洲季风区和干旱区形成的时间和原因明显不同. 北非与南非季风在古新世中期已经存在, 南亚次大陆季风在始新世印度大陆移入北半球热带后开始出现, 而东亚和澳大利亚北部季风在中新世才建立. 北非、南非、南亚和澳大利亚热带季风的建立是大陆漂移的位置和热带辐合带季节性迁移共同决定的, 而青藏高原的位置和高度则是东亚季风建立的关键因素. 北非、南非、亚洲和澳大利亚副热带干旱区的存在取决于大陆的位置和行星尺度副热带高压的控制, 阿拉伯半岛和西亚干旱区的发展与区域尺度海陆变迁, 特别是古特提斯海的退缩密切相关, 而亚洲内陆中纬度干旱区的形成则是青藏高原隆升的结果. 这一研究揭示了地球构造边界条件在地质时期区域气候环境形成演化中的重要作用.


Funded by

国家自然科学基金项目(41690115,41572150)

中国科学院战略性先导科技专项A类项目(XDA20070103)


Acknowledgment

作者衷心感谢匿名评审人对本文提出的宝贵意见和建议.


References

[1] 郭正堂. 2017. 黄土高原见证季风和荒漠的由来. 中国科学: 地球科学, 47: 421–437. Google Scholar

[2] 刘东生等. 1985. 黄土与环境. 北京: 科学出版社. 481. Google Scholar

[3] 刘晓东, Dong B W. 2013. 青藏高原隆升对亚洲季风-干旱环境演化的影响. 科学通报, 58: 2906–2919. Google Scholar

[4] 鹿化煜, 郭正堂. 2013. 晚新生代东亚气候变化: 进展与问题. 中国科学: 地球科学, 43: 1907–1918. Google Scholar

[5] 汪品先. 2009. 全球季风的地质演变. 科学通报, 5: 535–556. Google Scholar

[6] 赵松乔. 1983. 中国综合自然区划的一个新方案. 地理学报, 38: 1–10. Google Scholar

[7] Alaei Kakhki N, Aliabadian M, Schweizer M. Out of Africa: Biogeographic history of the open-habitat chats (Aves, Muscicapidae: Saxicolinae) across arid areas of the old world. Zool Scr, 2016, 45: 237-251 CrossRef Google Scholar

[8] An Z. The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev, 2000, 19: 171-187 CrossRef ADS Google Scholar

[9] An Z, Kutzbach J E, Prell W L, Porter S C. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 2001, 411: 62-66 CrossRef PubMed Google Scholar

[10] Beerling D J, Royer D L. Convergent Cenozoic CO2 history. Nat Geosci, 2011, 4: 418-420 CrossRef ADS Google Scholar

[11] Berry G, Reeder M J. Objective identification of the intertropical convergence zone: Climatology and trends from the ERA-Interim. J Clim, 2014, 27: 1894-1909 CrossRef ADS Google Scholar

[12] Besse J, Courtillot V, Pozzi J P, Westphal M, Zhou Y X. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture. Nature, 1984, 311: 621-626 CrossRef ADS Google Scholar

[13] Bobe R. The evolution of arid ecosystems in eastern Africa. J Arid Environ, 2006, 66: 564-584 CrossRef ADS Google Scholar

[14] Bosboom R, Dupont-Nivet G, Grothe A, Brinkhuis H, Villa G, Mandic O, Stoica M, Huang W, Yang W, Guo Z, Krijgsman W. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Res, 2014, 26: 621-640 CrossRef ADS Google Scholar

[15] Bowler J M, Wyrwoll K H, Lu Y. Variations of the northwest Australian summer monsoon over the last 300,000 years: The paleohydrological record of the Gregory (Mulan) Lakes System. Quat Int, 2001, 83-85: 63-80 CrossRef ADS Google Scholar

[16] Carrapa B, Huntington K W, Clementz M, Quade J, Bywater-Reyes S, Schoenbohm L M, Canavan R R. Uplift of the Central Andes of NW Argentina associated with upper crustal shortening, revealed by multiproxy isotopic analyses. Tectonics, 2014, 33: 1039-1054 CrossRef ADS Google Scholar

[17] Caves J K, Moragne D Y, Ibarra D E, Bayshashov B U, Gao Y, Jones M M, Zhamangara A, Arzhannikova A V, Arzhannikov S G, Chamberlain C P. The Neogene de-greening of Central Asia. Geology, 2016, 44: 887-890 CrossRef ADS Google Scholar

[18] Caley T, Malaizé B, Revel M, Ducassou E, Wainer K, Ibrahim M, Shoeaib D, Migeon S, Marieu V. Orbital timing of the Indian, East Asian and African boreal monsoons and the concept of a ‘global monsoon’. Quat Sci Rev, 2011, 30: 3705-3715 CrossRef ADS Google Scholar

[19] Chatterjee S, Goswami A, Scotese C R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res, 2013, 23: 238-267 CrossRef ADS Google Scholar

[20] Chiang J C H, Bitz C M. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dyn, 2005, 25: 477-496 CrossRef ADS Google Scholar

[21] Colin C, Siani G, Liu Z, Blamart D, Skonieczny C, Zhao Y, Bory A, Frank N, Duchamp-Alphonse S, Thil F, Richter T, Kissel C, Gargani J. Late Miocene to early Pliocene climate variability off NW Africa (ODP Site 659). Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 401: 81-95 CrossRef ADS Google Scholar

[22] DeCelles P G, Quade J, Kapp P, Fan M, Dettman D L, Ding L. High and dry in central Tibet during the Late Oligocene. Earth Planet Sci Lett, 2007, 253: 389-401 CrossRef ADS Google Scholar

[23] deMenocal P B. Plio-pleistocene African climate. Science, 1995, 270: 53-59 CrossRef ADS Google Scholar

[24] Dettman D L, Fang X, Garzione C N, Li J. Uplift-driven climate change at 12 Ma: A long δ18O record from the NE margin of the Tibetan plateau. Earth Planet Sci Lett, 2003, 214: 267-277 CrossRef ADS Google Scholar

[25] Ding L, Xu Q, Yue Y, Wang H, Cai F, Li S. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth Planet Sci Lett, 2014, 392: 250-264 CrossRef ADS Google Scholar

[26] Ding Z, Rutter N, Jingtai H, Tungsheng L. A coupled environmental system formed at about 2.5 Ma in East Asia. Palaeogeogr Palaeoclimatol Palaeoecol, 1992, 94: 223-242 CrossRef ADS Google Scholar

[27] Fan M, Carrapa B. Late Cretaceous-early Eocene Laramide uplift, exhumation, and basin subsidence in Wyoming: Crustal responses to flat slab subduction. Tectonics, 2014, 33: 509-529 CrossRef ADS Google Scholar

[28] Fang X, Zan J, Appel E, Lu Y, Song C, Dai S, Tuo S. An Eocene-Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: Indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophys J Int, 2015, 201: 78-89 CrossRef ADS Google Scholar

[29] Fujioka T, Chappell J. History of Australian aridity: Chronology in the evolution of arid landscapes. Geol Soc London Spec Publ, 2010, 346: 121-139 CrossRef ADS Google Scholar

[30] Gadgil S. The Indian Monsoon and its variability. Annu Rev Earth Planet Sci, 2003, 31: 429-467 CrossRef ADS Google Scholar

[31] Gadgil S. The monsoon system: Land-sea breeze or the ITCZ?. J Earth Syst Sci, 2018, 127: 1 CrossRef ADS Google Scholar

[32] Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 2002, 416: 159-163 CrossRef PubMed ADS Google Scholar

[33] Guo Z T, Sun B, Zhang Z S, Peng S Z, Xiao G Q, Ge J Y, Hao Q Z, Qiao Y S, Liang M Y, Liu J F, Yin Q Z, Wei J J. A major reorganization of Asian climate by the early Miocene. Clim Past, 2008, 4: 153-174 CrossRef Google Scholar

[34] Gupta A K, Yuvaraja A, Prakasam M, Clemens S C, Velu A. Evolution of the South Asian monsoon wind system since the late Middle Miocene. Palaeogeogr Palaeoclimatol Palaeoecol, 2015, 438: 160-167 CrossRef ADS Google Scholar

[35] Gurnis M, Turner M, Zahirovic S, DiCaprio L, Spasojevic S, Müller R D, Boyden J, Seton M, Manea V C, Bower D J. Plate tectonic reconstructions with continuously closing plates. Comput Geosci, 2012, 38: 35-42 CrossRef ADS Google Scholar

[36] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J Asian Earth Sci, 2002, 20: 353-431 CrossRef ADS Google Scholar

[37] Herold N, Seton M, Müller R D, You Y, Huber M. 2008. Middle Miocene tectonic boundary conditions for use in climate models. Geochemistry Geophysics Geosystems, 9: 1–10. Google Scholar

[38] Huber M, Goldner A. Eocene monsoons. J Asian Earth Sci, 2012, 44: 3-23 CrossRef ADS Google Scholar

[39] Jones C, Gregory J, Thorpe R, Cox P, Murphy J, Sexton D, Valdes P. Systematic optimisation and climate simulation of FAMOUS, a fast version of HadCM3. Clim Dyn, 2005, 25: 189-204 CrossRef ADS Google Scholar

[40] Kroon D. 1991. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc Ocean Drill Prog Sci Res, 117: 257–263. Google Scholar

[41] Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J Geol, 1993, 101: 177-190 CrossRef ADS Google Scholar

[42] Läderach A, Raible C C. Lower-tropospheric humidity: climatology, trends and the relation to the ITCZ. Tellus Ser A-Dyn Meteorol Oceanogr, 2013, 65: 20413 CrossRef ADS Google Scholar

[43] Li J X, Yue L P, Roberts A P, Hirt A M, Pan F, Guo L, Xu Y, Xi R G, Guo L, Qiang X K, Gai C C, Jiang Z X, Sun Z M, Liu Q S. Global cooling and enhanced Eocene Asian mid-latitude interior aridity. Nat Commun, 2018a, 9: 3026 CrossRef PubMed ADS Google Scholar

[44] Li X, Zhang R, Zhang Z, Yan Q. What enhanced the aridity in Eocene Asian inland: Global cooling or early Tibetan Plateau uplift?. Palaeogeogr Palaeoclimatol Palaeoecol, 2018b, 510: 6-14 CrossRef ADS Google Scholar

[45] Licht A, van Cappelle M, Abels H A, Ladant J B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C, Terry Jr D, Adriaens R, Boura A, Guo Z, Soe A N, Quade J, Dupont-Nivet G, Jaeger J J. Asian monsoons in a late Eocene greenhouse world. Nature, 2014, 513: 501-506 CrossRef PubMed ADS Google Scholar

[46] Linder H P. East African Cenozoic vegetation history. Evol Anthropol, 2017, 26: 300-312 CrossRef PubMed Google Scholar

[47] Liu X, Dong B, Yin Z Y, Smith R S, Guo Q. Continental drift and plateau uplift control origination and evolution of Asian and Australian monsoons. Sci Rep, 2017, 7: 40344 CrossRef PubMed ADS Google Scholar

[48] Liu X, Guo Q, Guo Z, Yin Z Y, Dong B, Smith R. Where were the monsoon regions and arid zones in Asia prior to the Tibetan Plateau uplift?. Nat Sci Rev, 2015a, 2: 403-416 CrossRef Google Scholar

[49] Liu X, Sun H, Miao Y, Dong B, Yin Z Y. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment. Quat Sci Rev, 2015b, 116: 1-14 CrossRef ADS Google Scholar

[50] Liu X, Yin Z Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 183: 223-245 CrossRef ADS Google Scholar

[51] Manabe S, Broccoli A J. Mountains and arid climates of middle latitudes. Science, 1990, 247: 192-195 CrossRef PubMed ADS Google Scholar

[52] Marin J, Donnellan S C, Hedges S B, Doughty P, Hutchinson M N, Cruaud C, Vidal N. 2013. Tracing the history and biogeography of the Australian blindsnake radiation. J Biogeogr, 40: 928–937. Google Scholar

[53] Martin H A. Cenozoic climatic change and the development of the arid vegetation in Australia. J Arid Environ, 2006, 66: 533-563 CrossRef ADS Google Scholar

[54] McIlveen R. 2010. Fundamentals of Weather and Climate. 2nd ed. New York: Oxford University Press. 527–534. Google Scholar

[55] Miller H B D, Vasconcelos P M, Eiler J M, Farley K A. A Cenozoic terrestrial paleoclimate record from He dating and stable isotope geochemistry of goethites from Western Australia. Geology, 2017, 45: 895-898 CrossRef ADS Google Scholar

[56] Molnar P, Stock J M. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 2009, 28: TC3001 CrossRef ADS Google Scholar

[57] Nicholson S E. A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Clim Dyn, 2009, 32: 1155-1171 CrossRef ADS Google Scholar

[58] Peel M C, Finlayson B L, McMahon T A. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci, 2007, 11: 1633-1644 CrossRef Google Scholar

[59] Polissar P J, Freeman K H, Rowley D B, McInerney F A, Currie B S. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth Planet Sci Lett, 2009, 287: 64-76 CrossRef ADS Google Scholar

[60] Popov S V, Shcherba I G, Ilyina L B, Nevesskaya L A, Paramonova N P, Khondkarian S O, Magyar I. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 238: 91-106 CrossRef ADS Google Scholar

[61] Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 1989, 342: 163-166 CrossRef ADS Google Scholar

[62] Quan C, Liu Y S C, Utescher T. Eocene monsoon prevalence over China: A paleobotanical perspective. Palaeogeogr Palaeoclimatol Palaeoecol, 2012, 365-366: 302-311 CrossRef ADS Google Scholar

[63] Ramstein G, Fluteau F, Besse J, Joussaume S. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 1997, 386: 788-795 CrossRef ADS Google Scholar

[64] Rea D K, Snoeckx H, Joseph L H. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 1998, 13: 215-224 CrossRef ADS Google Scholar

[65] Rix M G, Cooper S J B, Meusemann K, Klopfstein S, Harrison S E, Harvey M S, Austin A D. Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Mol Phylogenets Evol, 2017, 109: 302-320 CrossRef PubMed Google Scholar

[66] Rodwell M J, Hoskins B J. Monsoons and the dynamics of deserts. Q J R Meteorol Soc, 1996, 122: 1385-1404 CrossRef ADS Google Scholar

[67] Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 2006, 439: 677-681 CrossRef PubMed ADS Google Scholar

[68] Scotese C R. A continental drift flipbook. J Geol, 2004, 112: 729-741 CrossRef ADS Google Scholar

[69] Searle M P, Windley B F, Coward M P, Cooper D J W, Rex A J, Rex D, Tingdong L, Xuchang X, Jan M Q, Thakur V C, Kumar S. The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull, 1987, 98: 678-701 CrossRef Google Scholar

[70] Senut B, Pickford M, Ségalen L. Neogene desertification of Africa. C R Geosci, 2009, 341: 591-602 CrossRef ADS Google Scholar

[71] Shi Z, Liu X, An Z, Yi B, Yang P, Mahowald N. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: Contributions from the regional tectonic uplift and global climate change. Clim Dyn, 2011, 37: 2289-2301 CrossRef ADS Google Scholar

[72] Shukla A, Mehrotra R C, Spicer R A, Spicer T E V, Kumar M. Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: Evidence from the Gurha Mine, Rajasthan, India. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 412: 187-198 CrossRef Google Scholar

[73] Smith R S, Gregory J. The last glacial cycle: transient simulations with an AOGCM. Clim Dyn, 2012, 38: 1545-1559 CrossRef ADS Google Scholar

[74] Smith R S, Gregory J M, Osprey A. A description of the FAMOUS (version XDBUA) climate model and control run. Geosci Model Dev, 2008, 1: 53-68 CrossRef Google Scholar

[75] Spicer R, Yang J, Herman A, Kodrul T, Aleksandrova G, Maslova N, Spicer T, Ding L, Xu Q, Shukla A, Srivastava G, Mehrotra R, Liu X Y, Jin J H. Paleogene monsoons across India and South China: Drivers of biotic change. Gondwana Res, 2017, 49: 350-363 CrossRef ADS Google Scholar

[76] Sun J, Gong Z, Tian Z, Jia Y, Windley B. Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate. Palaeogeogr Palaeoclimatol Palaeoecol, 2015, 421: 48-59 CrossRef ADS Google Scholar

[77] Sun J, Windley B F. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia. Geology, 2015, 43: 1015-1018 CrossRef ADS Google Scholar

[78] Sun X, Wang P. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 222: 181-222 CrossRef ADS Google Scholar

[79] Sun Y, An Z. History and variability of Asian interior aridity recorded by eolian flux in the Chinese Loess Plateau during the past 7 Ma. Sci China Ser D-Earth Sci, 2002, 45: 420-429 CrossRef Google Scholar

[80] Veranso-Libalah M C, Kadereit G, Stone R D, Couvreur T L P. Multiple shifts to open habitats in Melastomateae (Melastomataceae) congruent with the increase of African Neogene climatic aridity. J Biogeogr, 2018, 45: 1420-1431 CrossRef Google Scholar

[81] Wang B, Ding Q. Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett, 2006, 33: L06711 CrossRef ADS Google Scholar

[82] Wang B, Liu J, Kim H J, Webster P J, Yim S Y. Recent change of the global monsoon precipitation (1979–2008). Clim Dyn, 2012, 39: 1123-1135 CrossRef ADS Google Scholar

[83] Wang C, Dai J, Zhao X, Li Y, Graham S A, He D, Ran B, Meng J. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 2014, 621: 1-43 CrossRef ADS Google Scholar

[84] Webster P J. 2004. The elementary Hadley circulation. In: Diaz H F, Bradley R S, eds. Present, Past and Future. Dordrecht: Springer. 9–60. Google Scholar

[85] Webster P J. 1987. The elementary monsoon. In: Fein J S, Stephens P L, eds. Monsoons. New York: John Wiley. 3–32. Google Scholar

[86] Wei H H, Meng Q R, Ding L, Li Z Y. Tertiary evolution of the western Tarim basin, northwest China: A tectono-sedimentary response to northward indentation of the Pamir salient. Tectonics, 2013, 32: 558-575 CrossRef ADS Google Scholar

[87] Williams M. Interactions between fluvial and eolian geomorphic systems and processes: Examples from the Sahara and Australia. Catena, 2015, 134: 4-13 CrossRef Google Scholar

[88] Wu G, Liu Y, He B, Bao Q, Duan A, Jin F F. Thermal controls on the Asian summer monsoon. Sci Rep, 2012, 2: 404 CrossRef PubMed ADS Google Scholar

[89] Wu G X, Liu Y, Zhu X, Li W, Ren R, Duan A, Liang X. Multi-scale forcing and the formation of subtropical desert and monsoon. Ann Geophys, 2009, 27: 3631-3644 CrossRef ADS Google Scholar

[90] Wyrwoll K H, Miller G H. Initiation of the Australian summer monsoon 14,000 years ago. Quat Int, 2001, 83-85: 119-128 CrossRef ADS Google Scholar

[91] Xie P, Arkin P A. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim, 1996, 9: 840-858 CrossRef Google Scholar

[92] Zachos J, Pagani M, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686-693 CrossRef PubMed ADS Google Scholar

[93] Žagar N, Skok G, Tribbia J. Climatology of the ITCZ derived from ERA Interim reanalyses. J Geophys Res, 2011, 116: D15103 CrossRef ADS Google Scholar

[94] Zhang Z, Flatøy F, Wang H, Bethke I, Bentsen M, Guo Z. Early Eocene Asian climate dominated by desert and steppe with limited monsoons. J Asian Earth Sci, 2012, 44: 24-35 CrossRef ADS Google Scholar

[95] Zhang Z, Ramstein G, Schuster M, Li C, Contoux C, Yan Q. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature, 2014, 513: 401-404 CrossRef PubMed ADS Google Scholar

[96] Zhuang G, Pagani M, Zhang Y G. Monsoonal upwelling in the western Arabian Sea since the middle Miocene. Geology, 2017, 45: 655-658 CrossRef ADS Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1