SCIENTIA SINICA Technologica, Volume 47, Issue 11: 1198-1206(2017) https://doi.org/10.1360/N092017-00078

## Theoretical and experimental research on the grout fronts diffusion considering filtration effect

• AcceptedJul 14, 2017
• PublishedAug 21, 2017
Share
Rating

### Abstract

Based on the seepage continuity equation, Darcy law, mass conservation equation, linear filtering law and pressure drop equation, the theoretical model of grout fronts diffusion was established. And through the model, the filtration mechanism of cement particles and the diffusion law of slurry fronts were analyzed. By applying the model test system developed independent, the dynamic variation law of the pressure of grout fronts is studied and compared with the theoretical value. The results show that, the permeability coefficient of the precipitated cement increases along the grout diffusion distance under the filtration effect. The change rate of frontal velocity is negatively correlated with the permeability coefficient of precipitated cement. At the specific diffusion distance, the frontal pressure drop p' increases first and then decreases, while the frontal pressure p and the average unit pressure drop ΔP' show the trend of decreasing first and then increasing. The deviation rate of frontal pressure value between theory and test is only from –10% to 26%, which reveal a high degree of coincidence. The conclusions can be used to guide the grouting design, which has certain application value to the practical engineering.

### References

[1] 钱七虎. 地下工程建设安全面临的挑战与对策. 岩石力学与工程学报, 2012, 31: 1945–1956. Google Scholar

[2] 罗汀, 姚仰平, Chu J. 饱和砂土的渐近状态特性及其模拟. 中国科学E辑: 技术科学, 2009, 39: 39–47. Google Scholar

[3] 鞠杨, 杨永明, 徐文静, 等. 岩石孔隙结构的统计模型. 中国科学E辑: 技术科学, 2008, 38: 1026–1041. Google Scholar

[4] 陈耀松, 单肖文, 陈沪东. 计算流体力学的新方向及其在工业上的应用. 中国科学E辑: 技术科学, 2007, 37: 1107–1116. Google Scholar

[5] 岩土注浆理论与工程实例协作组. 岩土注浆理论与工程实例. 北京: 科学出版社, 2001. 16–17. Google Scholar

[6] 雷进生. 碎石土地基注浆加固力学行为研究. 博士学位论文. 武汉: 中国地质大学, 2013. Google Scholar

[7] 李术才, 冯啸, 刘人太, 等. 考虑渗滤效应的砂土介质注浆扩散规律研究. 岩土力学, 2017, 38: 925–933. Google Scholar

[8] 湖南大学, 同济大学, 天津大学, 等. 土木工程材料. 北京: 中国建筑工业出版社, 2005. Google Scholar

[9] 冯啸, 刘人太, 李术才, 等. 考虑深层渗滤效应的水泥浆动界面特征研究. 岩石力学与工程学报, 2016, 35: 1000–1008. Google Scholar

[10] 刘人太. 水泥基速凝浆液地下水工程动水注浆封堵机制及应用研究. 博士学位论文. 济南: 山东大学, 2012. Google Scholar

[11] 冯啸, 李术才, 刘人太, 等. 孔隙介质中水泥浆三维锋面特征研究. 岩土力学, 2015, 36: 3171–3179. Google Scholar

[12] 陈星欣, 白冰, 于涛, 等. 粒径和渗流速度对多孔介质中悬浮颗粒迁移和沉积特性的耦合影响. 岩石力学与工程学报, 2013, 32(增1): 2840–2845. Google Scholar

[13] 张改玲. 化学注浆固砂体高压渗透性及其微观机理. 博士学位论文. 徐州: 中国矿业大学, 2011. Google Scholar

[14] 郭密文. 高压封闭环境孔隙介质中化学浆液扩散机制试验研究. 博士学位论文. 徐州: 中国矿业大学, 2010. Google Scholar

[15] Bradford S A, Simunek J, Bettahar M, et al. Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ Sci Technol, 2003, 37: 2242-2250 CrossRef ADS Google Scholar

[16] Bedrikovetsky P, Siqueira F D, Furtado C A, et al. Modified particle detachment model for colloidal transport in porous media. Transp Porous Media, 2011, 86: 353-383 CrossRef Google Scholar

[17] Porubcan A A, Xu S. Colloid straining within saturated heterogeneous porous media. Water Res, 2011, 45: 1796-1806 CrossRef PubMed Google Scholar

[18] Kampa D, Wurster S, Buzengeiger J, et al. Pressure drop and liquid transport through coalescence filter media used for oil mist filtration. Int J Multiphase Flow, 2014, 58: 313-324 CrossRef Google Scholar

[19] Yoon J, El Mohtar C S. A filtration model for evaluating maximum penetration distance of bentonite grout through granular soils. Comput Geotech, 2015, 65: 291-301 CrossRef Google Scholar

[20] 孔祥言. 高等渗流力学. 合肥: 中国科学技术大学出版社, 2010. 153–155. Google Scholar

[21] Saada Z, Canou J, Dormieux L, et al. Modelling of cement suspension flow in granular porous media. Int J Numer Anal Meth Geomech, 2005, 29: 691-711 CrossRef ADS Google Scholar

[22] Ives K J. Rapid filtration. Water Res, 1970, 4: 201-223 CrossRef Google Scholar

[23] Herzig J P, Leclerc D M, Goff P L. Flow of suspensions through porous media—Application to deep filtration. Ind Eng Chem, 1970, 62: 8-35 CrossRef Google Scholar

[24] 中国建筑材料科学研究总院. 通用硅酸盐水泥(GB 175-2007). 北京: 中国标准出版社, 2007. Google Scholar

[25] 中华人民共和国水利部. 土工试验方法标准(GB/T 50123-1999). 北京: 中国计划出版社, 1999. Google Scholar

• 图1

二维锋面扩散示意图

• 图2

(网络版彩图)锋面速度-扩散距离图

• 图3

(网络版彩图)压力降-时间曲线

• 图4

(网络版彩图)压力-扩散距离曲线

• 图5

模型试验装置示意图

• 图6

压力传感器布置图

• 图7

(网络版彩图)恒压渗透注浆试验

• 图8

(网络版彩图)理论值-试验值对比分析图. (a) t=10 s; (b) t=30 s

• 表 1   水泥浆基本性能
 性能 数值 水灰比 1:1 黏度(mPa s) 4.42 密度(g/cm3) 1.45 结石率(%) 85 凝胶时间(min) 初凝 776 终凝 1347
• 表 2   沙样颗粒级配
 分级粒径(mm) 筛余量 (%) 20~2 2~0.5 0.031 0.5~0.25 0.671 0.25~0.075 0.11 0.075~0.05 0.151 <0.05 0.037
• 表 3   沙样结构参数
 参数 数值 含水率(%) 29 密度(g/cm3) 1.83 孔隙率n0 0.21 渗透系数K(10−2 cm/s) 2.29 孔隙直径(mm) 0.16 沙样颗粒有效粒径(μm) 499
• 表 4   监测压力值
 监测点编号 距注浆孔距离 (cm) 压力 (kPa) t=10 s t=30 s 1 10 487 463 2 15 467 356 3 20 444 382 4 25 422 337 5 30 404 323 6 35 389 357 7 40 378 364 8 45 370 370 9 50 359 10 55 355 11 60 333 12 65 327 13 70 315

Citations

• #### 0

Altmetric

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有