SCIENTIA SINICA Informationis, Volume 44, Issue 6: 702-713(2014) https://doi.org/10.1360/N112014-00008

Analysis of energy internet key technologies

More info
  • AcceptedMar 31, 2014
  • PublishedJun 17, 2014


Energy internet is an important infrastructure to solve high-permeability of renewable energy generation in the future grid. A series of major issues about design, production, operation and management of this new grid. Six key technologies are proposed to realize the energy internet: advanced energy storage technology, solid state transformer technology, intelligent energy management technology, intelligent fault management technology, reliable and secure communications technology and system planning and analysis technology. Then the science problems of these technical issues are analyzed and discussed in this study.


[1] Rifkin J. Third Industrial Revolution (in Chinese). Zhang T W, Sun Y L, translation. Beijing: CITIC Press, 2012 [杰里米里夫金. 第三次工业革命. 张体伟, 孙毅宁, 译. 北京: 中信出版社, 2012]. Google Scholar

[2] Michael B M, Xi L, Chris P N, et al. Potential for wind-generated electricity in china. Science, 2009, 325: 1378-1380. Google Scholar

[3] Saima A, Yogesh S, Viktor K P. Energy management systems: state of the art and emerging trends. IEEE Commun Mag, 2013, 51: 114-119. Google Scholar

[4] Wang C S, Wang S X. Study on some key problems related to distributed generation systems. Automat Electric Power Syst, 2008, 32: 1-8 [王成山, 王守相. 分布式发电供能系统若干问题研究. 电力系统自动化, 2008, 32: 1-8]. Google Scholar

[5] Mei S W, Zhu J Q. Mathematical and control scientific issues of smart grid and its prospects. Acta Automat Sin, 2013, 39: 119-131 [梅生伟, 朱建全. 智能电网中的若干数学与控制科学问题及其展望. 自动化学报, 2013, 39: 119-131]. Google Scholar

[6] Lasseter R H. Microgrids. In: Proceedings of IEEE Power Engineering Society Winter Meeting, Michigan, 2002. 305-308. Google Scholar

[7] Ackermann T, Andersson G, Söder L. Distributed generation: a definition. Electr Pow Syst Res, 2001, 57: 195-204. Google Scholar

[8] Huang A Q, Crow M L, Heydt G T, et al. The future renewable electric energy delivery and management (FREEDM) system: the energy internet. P IEEE, 2011, 99: 133-148. Google Scholar

[9] Zha Y B, Zhang T, Tan S R, et al. Understanding and thinking of the energy internet. Nat Defense Sci Technol, 2012, 33: 1-6 [査亚兵, 张涛, 谭树人, 等. 关于能源互联网的认识与思考. 国防科技, 2012, 33: 1-6]. Google Scholar

[10] Massoud A S, Wollenberg B F. Toward a smart grid: power delivery for the 21st century. IEEE Power Energy M, 2005, 3: 34-41. Google Scholar

[11] Chen S, Song S, Li L, et al. Survey on smart grid technology. Power Syst Technol, 2009, 33: 1-7. Google Scholar

[12] Akella R, Meng F, Ditch D, et al. Distributed power balancing for the FREEDM system. In: Proceedings of IEEE International Conference on Smart Grid Communications, Gaithersburg, 2010. 7-12. Google Scholar

[13] Huang A. FREEDM system-a vision for the future grid. In: Proceedings of IEEE Power and Energy Society General Meeting, Minneapolis, 2010. 1-4. Google Scholar

[14] Yang Z, Zhang J, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid. Chem Rev, 2011, 111:3577-3613. Google Scholar

[15] Xiao L G, Ding R, Wei H L. Study of the new phase change composite materials. J Jilin Inst Archit Civil, 2008, 25:7-14 [肖力光, 丁锐, 魏宏亮. 新型相变储能材料的研究. 吉林建筑工程学院学报, 2008, 25: 7-14]. Google Scholar

[16] Chen Y J. Research on modeling and SOC algorithm of LiFePO4 battery. Dissertation for the Doctoral Degree. Harbin: Harbin Institute of Technology, 2011 [陈勇军. 磷酸铁锂电池建模及SOC 算法研究. 哈尔滨, 哈尔滨工业大学, 2011]. Google Scholar

[17] Zhao T F. Design and Control of a Cascaded H-Bridge Converter based Solid State Transformer (SST). North Carolina State: North Carolina State University, 2010. 20-21. Google Scholar

[18] Li Y Z. A review of 4H-SiC power electronic devices. Res Prog Solid State Electron, 2011, 31: 213-218 [李宇柱. SiC 电力电子技术综述. 固体电子学进展与研究, 2011, 31: 213-218]. Google Scholar

[19] Tie F Z, Li Y Y, Jun W, et al. 270 kVA solid state transformer based on 10 kV SiC power devices. In: Proceedings of IEEE Electric Ship Technologies Symposium, Arlington, 2007. 145-149. Google Scholar

[20] Wang G Y, She X, Wang F, et al. Comparisons of different control strategies for 20 kVA solid state transformer. In: Proceedings of IEEE Energy Conversion Congress and Exposition, Phoenix, 2011. 3173-3178. Google Scholar

[21] Watterson J, White L, Bhattacharya S, et al. Operation and design considerations of FID at distribution voltages. In: Proceedings of IEEE Applied Power Electronics Conference and Exposition, Long Beach, 2013. 2206-2211. Google Scholar

[22] Zhang M R, Liu J H, Jin X. Research on the FREEDM micro-grid and its relay protection. Power Syst Protect Control, 2011, 39: 95-100 [张明锐, 刘金辉, 金鑫. FREEDM 微型电网及其继电保护研究. 电力系统保护与控制, 2011, 39: 95-100]. Google Scholar

[23] Tatcho P, Jiang Y, Li H. A novel line section protection for the FREEDM system based on the solid state transformer. In: Proceedings of IEEE Power and Energy Society General Meeting, San Diego, 2011. 1-8. Google Scholar

[24] Xiang L, Wen Y W, Jian F M. An empirical study of communication infrastructures towards the smart grid: design, implementation, and evaluation. IEEE Trans Smart Grid, 2013, 4: 170-183. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有