SCIENTIA SINICA Informationis, Volume 46, Issue 6: 677-697(2016) https://doi.org/10.1360/N112014-00252

A new paradigm for personalized mashup recommendation based on dynamic contexts in mobile computing environments

More info
  • ReceivedJun 17, 2015
  • AcceptedAug 20, 2015
  • PublishedMay 26, 2016


With the rapid development of mobile Internet and increasing number of intelligent terminals, Internet services are now integrated into people's daily lives. In mobile computing environments, challenges have emerged for unprofessional user oriented mashup servers with new features, such as dynamic contexts and user preference. In this paper, we focus on the entire construction process rather than individual service recommendation for mashups, and propose a context-based and user preference-based autonomous construction approach for mashups. The main idea is to construct a context- and preference-related conditional probability model for user behavior patterns based on pattern mining of historical mashup logs, which can provide support for the generation of optimal personalized mashup solutions and also recommend suitable web components. Analysis and simulation experiments conducted indicate that the proposed approach can autonomously generate personalized mashups with quality components without dependence on user professionalism.

Funded by







[1] Elmeleegy H, Ivan A, Akkiraju R, et al. Mashup advisor: a recommendation tool for mashup development. In: Proceedings of the IEEE International Conference on Web Services. New York: IEEE, 2008. 337-344. Google Scholar

[2] Greenshpan O, Milo T, Polyzotis N. Autocompletion for mashups. In: Proceedings of the VLDB Endowment. Lyon: ACM, 2009. 538-549. Google Scholar

[3] Picozzi M, Rodolfi M, Cappiello C, et al. Quality-based recommendations for Mashup composition. In: Proceedings of the 10th International Conference on Web Engineering. Berlin: Springer, 2010. 360-371. Google Scholar

[4] Bianchini D, De Antonellis V, Melchiori M. Semantics-enriched web APIs selection for enterprise Mashup development. In: Information Systems: Crossroads for Organization, Management, Accounting and Engineering. Berlin: Springer, 2012. 95-103. Google Scholar

[5] Ngu A H H, Carlson M P, Sheng Q Z, et al. IEEE Trans Serv Comput, 2010, 3: 2-15 CrossRef Google Scholar

[6] Zheng Z, Ma H, Lyu M R, et al. IEEE Trans Serv Comput, 2011, 4: 140-152 CrossRef Google Scholar

[7] Maaradji A, Hacid H, Skraba R, et al. Social-based web services discovery and composition for step-by-step Mashup completion. In: Proceedings of the IEEE International Conference on Web Services. New York: IEEE, 2011. 700-701. Google Scholar

[8] Cao B, Liu J, Tang M, et al. Mashup service recommendation based on user interest and social network. In: Proceedings of the IEEE International Conference on Web Services. New York: IEEE, 2013. 99-106. Google Scholar

[9] Medjahed B, Atif Y. Context-based matching for web service composition. Distrib Parall Databases, 2007, 21: 5-37. Google Scholar

[10] Beltran V, Arabshian K, Schulzrinne H. Ontology-based user-defined rules and context-aware service composition system. In: Proceedings of the Semantic Web: ESWC Workshops. Berlin: Springer, 2012. 139-155. Google Scholar

[11] Zhou J, Gilman E, Palola J, et al. Pers Ubiquit Comput, 2011, 15: 291-303 CrossRef Google Scholar

[12] Mokhtar S, Fournier D, Georgantas N, et al. Context-aware service composition in pervasive computing environments. In: Proceedings of the 2nd International Workshop, RISE 2005. Berlin: Springer, 2006. 129-144. Google Scholar

[13] Niu W, Li G, Tang H, et al. J Netw Comput Appl, 2011, 34: 1757-1770 CrossRef Google Scholar

[14] Sirin E, Parsia B, Wu D, et al. J Web Semant, 2004, 1: 377-396 CrossRef Google Scholar

[15] Adomavicius G, Tuzhilin A. Context-aware recommender systems. In: Recommender Systems Handbook. Berlin: Springer, 2011. 217-253. Google Scholar

[16] Sheth A P, Gomadam K, Lathem J. IEEE Internet Comput, 2007, 11: 91-94 CrossRef Google Scholar

[17] Good N, Schafer J B, Konstan J A, et al. Combining collaborative filtering with personal agents for better recommendations. In: Proceedings of the 16th National Conference on Artificial Intelligence. Menlo Park: AAAI, 1999. 439-446. Google Scholar

[18] Li T, He W, Cui L Z, et al. Autonomous constructor of process based on personalized characteristics and preferences. Comput Integr Manuf Syst, 2013, 19: 1906-1912 [李婷, 何伟, 崔立真, 等. 基于用户偏好的个性化流程自主构建方法. 计算机集成制造系统, 2013, 19: 1906-1912]. Google Scholar

[19] Platzer C, Rosenberg F, Dustdar S. Web service clustering using multidimensional angles as proximity measures. ACM Trans Internet Tech, 2009, 9: 1-26. Google Scholar

[20] Sun P, Jiang C J. Using service clustering to facilitate process-oriented semantic web service discovery. Chinese J Comput, 2008, 31: 1340-1353 [孙萍, 蒋昌俊. 利用服务聚类优化面向过程模型的语义Web服务发现. 计算机学报, 2008, 31: 1340-1353]. Google Scholar

[21] Xu M, Cui L Z, Li Q Z. An extended graph-planning based Top-K service composition method. Acta Electron Sinica, 2012, 40: 1404-1409 [徐猛, 崔立真, 李庆忠. 基于扩展图规划的Top-K服务组合方法研究. 电子学报, 2012, 40: 1404-1409]. Google Scholar

[22] Hatzi O, Vrakas D, Nikolaidou M, et al. IEEE Trans Serv Comput, 2012, 5: 319-332 CrossRef Google Scholar

[23] Chen X, Zheng Z, Liu X, et al. IEEE Trans Serv Comput, 2013, 6: 35-47 CrossRef Google Scholar

[24] Truong H L, Dustdar S. Int J Web Inf Syst, 2009, 5: 5-31 CrossRef Google Scholar

[25] Wang J, Zeng C, He C, et al. Context-aware role mining for mobile service recommendation. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing. New York: ACM, 2012. 173-178. Google Scholar

[26] Hussein M, Han J, Yu J, et al. Scenario-based validation of requirements for context-aware adaptive services. In: Proceedings of the IEEE International Conference on Web Services. New York: IEEE, 2013. 348-355. Google Scholar

[27] Meng S, Dou W, Zhang X, et al. IEEE Trans Parall Distrib Syst, 2014, 25: 3221-3231 CrossRef Google Scholar

[28] Shin D, Lee J, Yeon J, et al. Context-aware recommendation by aggregating user context. In: Proceedings of the IEEE Conference on Commerce and Enterprise Computing. New York: IEEE, 2009. 423-430. Google Scholar

[29] Karatzoglou A, Amatriain X, Baltrunas L, et al. Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the 4th ACM Conference on Recommender Systems. New York: ACM, 2010. 79-86. Google Scholar

[30] Gao M, Wu Z. Personalized context-aware collaborative filtering based on neural network and slope one. In: Proceedings of the International Conference on Cooperative Design, Visualization, and Engineering. Berlin: Springer, 2009. 109-116. Google Scholar

[31] Chen A. Context-aware collaborative filtering system: predicting the user's preference in the ubiquitous computing environment. In: Proceedings of the 1st International Workshop on Location- and Context-Awareness. Berlin: Springer, 2005. 244-253. Google Scholar

[32] Ning D, He K Q, Peng R, et al. An automatic emerging approach for web service semantics based on social tagging. Chinese J Comput, 2011, 34: 2414-2426 [宁达, 何克清, 彭蓉, 等. 基于社会标注的 Web 服务语义自动浮现方法. 计算机学报, 2011, 34: 2414-2426]. Google Scholar

[33] Deng S G, Huang L T, Wu B, et al. QoS optimal automatic composition of semantic web services. Chinese J Comput, 2013, 36: 1015-1030 [邓水光, 黄龙涛, 吴斌, 等. 一种 QoS 最优的语义 Web 服务自动组合方法. 计算机学报, 2013, 36: 1015-1030]. Google Scholar

[34] Pan W F, Li B, Shao B, et al. Service classification and recommendation based on software networks. Chinese J Comput, 2011, 34: 2355-2369 [潘伟丰, 李兵, 邵波, 等. 基于软件网络的服务自动分类和推荐方法研究. 计算机学报, 2011, 34: 2355-2369]. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有