SCIENTIA SINICA Informationis, Volume 46, Issue 6: 743-762(2016) https://doi.org/10.1360/N112015-00036

Structure and theory of dual-space storage for ternary optical computer

More info
  • ReceivedFeb 27, 2015
  • AcceptedJun 15, 2015
  • PublishedMay 27, 2016


A ternary optical processor can have thousands of data bits, each of which can be independently assigned to a different task and reconstructed in real-time according to user demand at runtime. Consequently, significant amounts of data are frequently transferred between storage and processor in a ternary optical computer. In this study, a dual-space storage (DSS) system and a new technique to push memory space (PMS) on the DSS was developed to rectify this issue. The developed methods exploit the non-volatility and random access of solid state disks. This paper introduces the theory, architecture, management, and usage of DSS in detail, and also describes the hardware structure, technical principles, and push commands of PMS. Several new methods based on the unclosable windows in DSS (such as jobs resuming as soon as the computer is powered on, elimination of the wait time to launch a program, and improved system security) are also discussed. The results of simulation of DSS and PMS in an 8086 system verify the efficacy of the new theory and the related technologies. Both DSS and PMS not only meet the memory requirements of the ternary optical computer, but also provide a theoretical and technical foundation for constructing a new computer architecture based on solid state disks.

Funded by








[1] Yan J Y, Jin Y, Zuo K Z. Sci China Ser F-Inf Sci, 2008, 51: 1415-1426 CrossRef Google Scholar

[2] Yan J Y, Jin Y, Zuo K Z. Carry-free n-value operator. China Patent, ZL200710041144.1 [严军勇, 金翊, 左开中. 无进位无借位n值运算器. 中国专利, ZL200710041144.1]. Google Scholar

[3] Wang X C, Peng J J, Ouyang S. Appl Optics, 2011, 50: 662-670 CrossRef Google Scholar

[4] Jin Y, Wang H J, Ouyang S, et al. Sci China Inf Sci, 2011, 54: 2236-2246 CrossRef Google Scholar

[5] Song K, Jin Y, Ouyang S, et al. Reconfigurable ternary optical processor with double rotator structure. Optics Precis Eng, 2012, 20: 1890-1898 [宋凯, 金翊, 欧阳山, 等. 双旋光器结构的可重构三值光学处理器. 光学精密工程, 2012, 20: 1890-1898]. Google Scholar

[6] Wang H J, Jin Y, Ouyang S. Design and implementation of a 1-bit reconfigurable ternary optical processor. Chinese J Comput, 2014, 37: 1500-1507 [王宏健, 金翊, 欧阳山. 一位可重构三值光学处理器的设计和实现. 计算机学报, 2014, 37: 1500-1507]. Google Scholar

[7] Jin Y, Ouyang S, Peng J J, et al. Reconfigurable ternary optical computer. China Patent, ZL201010584129.3 [金翊, 欧阳山, 彭俊杰, 等. 可重构的三值光学处理器. 中国发明专利, ZL201010584129.3]. Google Scholar

[8] Jin Y, Shen Y F, Peng J J, et al. Sci China Inf Sci, 2010, 53: 2159-2168 CrossRef Google Scholar

[9] Song K, Yan L P. Appl Optics, 2012, 51: 917-926 CrossRef Google Scholar

[10] Shen Y F, Pan L, Jin Y, et al. One-step binary MSD adder for ternary optical computer. Sci Sin Inform, 2012, 42: 869-881 [沈云付, 潘磊, 金翊, 等. 三值光学计算机一种限制输入一步式MSD 加法器. 中国科学: 信息科学, 2012, 42: 869-881]. Google Scholar

[11] Peng J J, Liu Y P, Jin Y, et al. Carry-free adder based on ternary optical computer. China Patent, ZL201010518342.4 [彭俊杰, 刘艳萍, 金翊, 等. 三值光学计算机的无进位加法器. 中国发明专利, ZL201010518342.4]. Google Scholar

[12] Peng J J, Shen R, Jin Y, et al. IEEE Trans Comput, 2014, 63: 1134-1143 CrossRef Google Scholar

[13] Jin Y, Ouyang S, Song K, et al. Management of many data bits in ternary optical computers. Sci Sin Inform, 2013, 43: 361-373 [金翊, 欧阳山, 宋凯, 等. 三值光学处理器的数据位管理理论和技术. 中国科学: 信息科学, 2013, 43: 361-373]. Google Scholar

[14] Jin Y. Management strategy of data bits in ternary optical computer, J Shanghai Univ (Natural Science), 2007, 13: 519-523 [金翊. 三值光计算机高数据宽度的管理策略. 上海大学学报(自然科学版), 2007, 13: 519-523]. Google Scholar

[15] Zhang Q, Jin Y, Song K, et al. MPI programming based on ternary optical computer in supercomputer. J Shanghai Univ (Natural Science). 2014, 20: 180-189 [张茜, 金翊, 宋凯, 等. 三值光学计算机MPI编程技术在超算集群中的使用. 上海大学学报(自然科学版), 2014, 20: 180-189]. Google Scholar

[16] Gao H, Jin Y, Song K. Extension of C language in ternary optical computer. J Shanghai Univ (Natural Science), 2013, 19: 280-285 [高桓, 金翊, 宋凯. 针对三值光学计算机的C语言扩展. 上海大学学报(自然科学版), 2013, 19: 280-285]. Google Scholar

[17] Jin Y, Xu Q, Ouyang S, et al. Structured data computer--application characteristics of ternary optical computer. Sci Sin Inform, 2016, 46: 311-324 [金翊, 徐群, 欧阳山, 等. 结构量计算机---三值光学计算机的应用特点. 中国科学: 信息科学, 2016, 46: 311-324]. Google Scholar

[18] Jin Y. Draw near optical computer. J Shanghai Univ (Natural Science), 2011, 17: 401-411 [金翊. 走近光学计算机. 上海大学学报(自然科学版), 2011, 17: 401-411]. Google Scholar

[19] Lu Y Y, Shu J W. Survey on flash-based storage systems. J Comput Res Dev, 2013, 50: 49-59 [陆游游, 舒继武. 闪存存储系统综述. 计算机研究与发展, 2013, 50: 49-59]. Google Scholar

[20] Fan C F, Yang Y, Zhang S M, et al. Review of patent technology related to phase change memory. Metallic Functional Materials, 2013, 20: 54-59 [范崇飞, 杨燕, 张思秘, 等. 相变存储器专利技术现状和趋势分析. 金属功能材料, 2013, 20: 54-59]. Google Scholar

[21] Hao J H, Gao H. Micromagnetic simulation of magnetization reversal on the annular free layer with nick in magnetic random access memory. Acta Phys Sin, 2013, 62: 057502 [郝建红, 高辉. 磁存储器环形带切口结构自由层磁化反转的微磁模型. 物理学报, 2013, 62: 057502]. Google Scholar

[22] Zhai Y H, Li W, LI P, et al. Research progress of radiation hardened ferroelectric random access memory. Materials Review A: Review Article, 2012, 26: 34-38 [翟亚红, 李威, 李平, 等. 抗辐射铁电存储器的研究进展. 材料导报A: 综述篇, 2012, 26: 34-38]. Google Scholar

[23] Duan S K, Hu X M, Wang L D, et al. Memristor-based RRAM with applications. Sci Sin Inform, 2012, 42: 754-769 [段书凯, 胡小方, 王丽丹, 等. 忆阻器阻变随机存取存储器及其在信息存储中的应用. 中国科学: 信息科学, 2012, 42: 754-769]. Google Scholar

[24] Jin Y, Ouyang S, Shen Y F, et al. A new computer architecture and its read/write method. China Patent, 201410199434.9 [金翊, 欧阳山, 沈云付, 等. 一种计算机系统和数据读写方法. 中国发明专利, 201410199434.9]. Google Scholar

[25] Jin Y, Wang X C, Peng J J, et al. Conceptual structure of ternary optical computer and high performance computer merger. High Perform Comput Technol, 2010. 1-4 [金翊, 王先超, 彭俊杰, 等. 三值光学计算机与高性能计算机系统融合的概念结构. 高性能计算技术, 2010. 1-4]. Google Scholar

[26] Intel. Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 3A, System Programming Guide, Part 1. 9.1.4 First instruction Executed, Vol.3A:9-6. Google Scholar

[27] Shi X F, Jin Y, Feng P, et al. 32 Bits Microcomputer Principle, Interfacing and Application. 2nd Ed. Xi'an: Northwestern Polytechnical University Press, 2001. 135-139 [史新福, 金翊, 冯萍, 等. 32位微型计算机原理接口技术及其应用. 第二版. 西安: 西北工业大学出版社, 2001. 135-139]. Google Scholar

[28] Zhan H J, Jin Y, Ouyang S, et al. Experimentation of moving memory space on double-space storage. J Shanghai Univ (Natural Science), accepted [展豪君, 金翊, 欧阳山, 等. 内存空间在双空间存储器上的推移技术实验研究. 上海大学学报(自然科学版), 录用]. Google Scholar

[29] Gu H, Liang X Y. Microcomputer Principle & Interfacing: Based on 8086 and Proteus Simulation. Beijing: Publishing House of Electronics Industry, 2011. 177-288 [顾晖, 梁惺彦. 微机原理与接口技术: 基于8086和Proteus仿真. 北京: 电子工业出版社, 2011. 177-288]. Google Scholar

[30] Zhu Q, Li X Y. A review on hybrid storage. Microcomput Appl, 2013, 29: 33-37 [祝青, 李小勇. 混合存储综述. 微型电脑应用, 2013, 29: 33-37]. Google Scholar

[31] Li H Y. SMARC: exploit SLC and MLC cells complementarily and effectively within one architecture. Appl Res Comput, 2013, 30: 2443-2446 [李红艳. SMARC: 一种结合SLC和MLC的混合固态盘架构. 计算机应用研究, 2013, 30: 2443-2446]. Google Scholar

[32] Freitas R, Wilcke W, Kurdi B. Storage class memory, technology and use. Tutorial of 6th USENIX Conference on File and Storage Technologies (FAST'08), 2008. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有