logo

SCIENTIA SINICA Informationis, Volume 46, Issue 2: 125-164(2016) https://doi.org/10.1360/N112015-00176

Survey on cyberspace security

More info
  • AcceptedSep 29, 2015
  • PublishedJan 28, 2016

Abstract

Along with the rapid development and wide application of information technology, human society is entering the information era. In this era, people live and work in cyberspace, which is a collection of all infor-mation systems, and the information environment for human survival. Therefore, ensuring cyberspace security is necessary. This paper provides a comprehensive introduction to the research and development, existing prob-lems, and some popular research topics on the cyberspace concept, cyberspace security discipline, cryptography, network security, information system security, and information content security.


References

[1] Shen C X, Zhang H G, Feng D G, et al. Information security survey. Sci China Ser E-Inf Sci, 2007, 37: 129-150 [沈 昌祥, 张焕国, 冯登国, 等. 信息安全综述. 中国科学E 辑: 信息科学, 2007, 37: 129-150]. Google Scholar

[2] Shen C X, Zhang H G, Feng D G, et al. Survey of information security. Sci China Ser E-Inf Sci, 2007, 50: 273-298. Google Scholar

[3] Zhang H G, Qin Z P. Introduction to Evolution Cryptology. Wuhan: Wuhan University Press, 2010 [张焕国, 覃中平. 演化密码引论. 武汉: 武汉大学出版社, 2010]. Google Scholar

[4] Zhang H G, Zhao B. Trusted Computing. Wuhan: Wuhan University Press, 2011 [张焕国, 赵波. 可信计算. 武汉: 武 汉大学出版社, 2011]. Google Scholar

[5] Daniel J B, Johannes B, Erik. Post Quantum Cryptology. Beijing: Tsinghua University Press, 2015 [张焕国, 王后珍, 杨昌, 等. 抗量子计算密码. 北京: 清华大学出版社, 2015]. Google Scholar

[6] Zhang H G, Guan H M, Wang H Z. Current research of post quantum cryptography. In: Cryptography Development Report of China. Beijing: Electronics Industry Press, 2011. 1-31 [张焕国, 管海明, 王后珍. 抗量子密码体制的研究 现状. 见: 中国密码学发展报告. 北京: 电子工业出版社, 2011. 1-31]. Google Scholar

[7] Information Security Professional Instruction Committee-Information Security Professional Specification Project Group. Information Security Majority Insructive Specification. Beijing: Tsinghua University Press, 2014 [信息安 全类专业教学指导委员会信息安全专业规范项目组. 信息安全专业指导性专业规范. 北京: 清华大学出版社, 2014]. Google Scholar

[8] Zhang H G, Du R Y, Fu J M, et al. Information security discipline. Netw Secur, 2014, 56: 619-620 [张焕国, 杜瑞颖, 傅建明, 等. 论信息安全学科. 网络安全, 2014, 56: 619-620]. Google Scholar

[9] Zhang H G, Wang L N, Du R Y, et al. Information security discipline system structure research. J Wuhan Univ, 2010, 56: 614-620 [张焕国, 王丽娜, 杜瑞颖, 等. 信息安全学科体系结构研究. 武汉大学学报理学版, 2010, 56: 614-620]. Google Scholar

[10] Bar-On A, Dinur I, Dunkelman O, et al. Cryptanalysis of SP networks with partial non-linear layers. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 315-342. Google Scholar

[11] Sun S W, Hu L, Wang P, et al. Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2014. 158-178. Google Scholar

[12] Emami S, Ling S, Nikoli04 I, et al. Low probability differentials and the cryptanalysis of full-round CLEFIA-128. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2014. 141-157. Google Scholar

[13] Bogdanov A, Knudsen L R, Leander G, et al. PRESENT: an ultra-lightweight block cipher. In: Cryptographic Hardware and Embedded Systems-CHES. Berlin: Springer, 2007. 450-466. Google Scholar

[14] Wu W L, Zhang L. LBlock: a lightweight block cipher. In: Applied Cryptography and Network Security. Berlin: Springer, 2011. 327-344. Google Scholar

[15] Borghoff J, Canteaut A, Güneysu T, et al. PRINCE-a low-latency block cipher for pervasive computing applications. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2012. 208-225. Google Scholar

[16] Albrecht M R, Benedikt D, Kavun E B, et al. Block ciphers-focus on the linear layer (feat. PRIDE). In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 57-76. Google Scholar

[17] Gilbert H. A simplified representation of AES. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2014. 200-222. Google Scholar

[18] Papakonstantinou P A, Yang G. Cryptography with streaming algorithms. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 55-70. Google Scholar

[19] Banegas G. Attacks in stream ciphers: a survey.. Google Scholar

[20] A˙ gren M, Löndahl C, Hell M, et al. A survey on fast correlation attacks. Cryptogr Commun, 2012, 4: 173-202. Google Scholar

[21] Hell M, Johansson T, Brynielsson L. An overview of distinguishing attacks on stream ciphers. cryptogr commun, 2009, 1: 71-94. Google Scholar

[22] Knellwolf S, Meier W. High order differential attacks on stream ciphers. Cryptogr Commun, 2012, 4: 203-215. Google Scholar

[23] Dinur I, Shamir A. Applying cube attacks to stream ciphers in realistic scenarios. Cryptogr Commun, 2012, 4: 217-232. Google Scholar

[24] Zhang J M, Qi W F, Tian T, et al. Further results on the decomposition of an NFSR into the cascade connection of an NFSR into an LFSR. IEEE Trans Inf Theory, 2015, 61: 645-654. Google Scholar

[25] Yang D, Qi W F, Zheng Q X. Further results on the distinctness of modulo 2 reductions of primitive sequences over Z=(232-1). Design Code Cryptogr, 2015, 74: 467-480. Google Scholar

[26] ETSI/SAGE TS 35.222-2011. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 and 128-EIA3. Document 2: ZUC Specification. Google Scholar

[27] Wang X Y, Yu H B, Yin Y L. Efficient collision search attacks on SHA-0. In: Advances in Cryptology-CRYPTO. Berlin: Springer, 2005. 1-16. Google Scholar

[28] Wang X Y, Yin Y L, Yu H B. Finding collisions in the full SHA-1. In: Advances in Cryptology-CRYPTO. Berlin: Springer, 2005. 17-36. Google Scholar

[29] Wang X Y, Lai X J, Feng D G, et al. Cryptanalysis of the hash functions MD4 and RIPEMD. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2005. 1-18. Google Scholar

[30] Wang X Y, Yu H B. How to break MD5 and other hash functions. In: Advances in Cryptology EUROCRYPT, Berlin: Springer, 2005. 19-35. Google Scholar

[31] Jian G, Peyrin T, Yu S, et al. Updates on generic attacks against HMAC and NMAC. In: Advances in Cryptology-CRYPTO. Berlin: Springer, 2014. 131-148. Google Scholar

[32] Guo J, Sasaki Y, Wang L, et al. Cryptanalysis of HMAC/NMAC-Whirlpool. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2013. 21-40. Google Scholar

[33] Leurent G, Peyrin T, Wang L. New generic attacks against hash-based MACs. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2013. 1-20. Google Scholar

[34] Peyrin T, Yu S, Lei W. Generic related-key attacks for HMAC. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2012. 580-597. Google Scholar

[35] Catalano D, Fiore D. Practical homomorphic MACs for arithmetic circuits. In: Advances in Cryptology-EUROCRYPT. Berlin: Springer, 2013. 336-352. Google Scholar

[36] Cryptographic competitions,. Google Scholar

[37] Bogdanov A, Mendel F, Regazzoni F, et al. ALE: AES-based lightweight authenticated encryption. In: Fast Software Encryption. Berlin: Springer, 2014. 447-466. Google Scholar

[38] Bilgin B, Bogdanov A, Knězević M, et al. Fides: lightweight authenticated cipher with side-channel resistance for constrained hardware. In: Cryptographic Hardware and Embedded Systems-CHES. Berlin: Springer, 2013. 142-158. Google Scholar

[39] Hoang V T, Krovetz T, Rogaway P. Robust authenticated-encryption AEZ and the problem that it solves. In: Advances in Cryptology-EUROCRYPT. Berlin: Springer, 2015. 15-44. Google Scholar

[40] Sarkar P. Modes of operations for encryption and authentication using stream ciphers supporting an initialisation vector. Cryptogr Commun, 2014, 6: 189-231. Google Scholar

[41] Lu X H, Li B, Jia D D. KDM-CCA security from RKA secure authenticated encryption. In: Advances in Cryptology-EUROCRYPT. Berlin: Springer, 2015. 559-583. Google Scholar

[42] Joo C H, Yun A. Homomorphic authenticated encryption secure against chosen-ciphertext attack. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2014. 173-192. Google Scholar

[43] Andreeva E, Bogdanov A, Luykx A, et al. How to securely release unverified plaintext in authenticated encryption. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2014. 105-125. Google Scholar

[44] Wu S, Wu H, Huang T, et al. Leaked-state-forgery attack against the authenticated encryption algorithm ALE. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2013. 377-404. Google Scholar

[45] Dinur I, Jean J. Cryptanalysis of FIDES. In: Fast Software Encryption. Berlin: Springer, 2014. 224-240. Google Scholar

[46] Nandi M. Forging attacks on two authenticated encryption schemes COBRA and POET. In: Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2014. 126-140. Google Scholar

[47] Wang P, Wu W L, Zhang L T. Cryptanalysis of the OKH authenticated encryption scheme. In: Information Security Practice and Experience. Berlin: Springer, 2013. 353-360. Google Scholar

[48] Shamir A. Identity-based cryptosystems and signature schemes. In: Proceedings of CRYPTO 84 on Advances in Cryptology. Berlin: Springer, 1985. 47-53. Google Scholar

[49] Boneh D, Franklin F. Identity-based encryption from the Wail pairing. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2001, 32: 586-615. Google Scholar

[50] Dan B, Boyen X, Goh E J. Hierarchical identity based encryption with constant size ciphertext. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2005. 440-456. Google Scholar

[51] Waters B. Efficient identity-based encryption without random oracles. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2005. 114-127. Google Scholar

[52] Ducas L, Lyubashevsky V, Prest T. Efficient identity-based encryption over NTRU lattices. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2014. 22-41. Google Scholar

[53] Blazy O, Kiltz E, Pan J. (Hierarchical) Identity-based encryption from affine message authentication. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 408-425. Google Scholar

[54] Al-Riyami S S, Paterson K G. Certificateless public key cryptography. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2003. 452-473. Google Scholar

[55] Dan B, Gentry C, Waters B. Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2005. 258-275. Google Scholar

[56] Dan B, Waters B, Zhandry M. Low overhead broadcast encryption from multilinear maps. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 206-223. Google Scholar

[57] Sahai A, Waters B. Fuzzy identity-based encryption. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2005. 457-473. Google Scholar

[58] Goyal V, Pandey O, Sahai A, et al. Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security. New York: ACM, 2006. 89-98. Google Scholar

[59] Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-based encryption. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy Computer Society, Berkeley, 2007. 321-334. Google Scholar

[60] Chen J, Gay R, Wee H. Improved dual system ABE in prime-order groups via predicate encodings. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 595-624. Google Scholar

[61] Garg S, Gentry C, Sahai A, et al. Witness encryption and its applications. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing. New York: ACM, 2013. 467-476. Google Scholar

[62] Gentry C, Lewko A B, Waters B. Witness encryption from instance independent assumptions. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 426-443. Google Scholar

[63] Waters B. Functional encryption: origins and recent developments. In: Public-Key Cryptography PKC. Berlin: Springer, 2013. 51-54. Google Scholar

[64] Barbosa M, Farshim P. On the semantic security of functional encryption schemes. In: Public-Key Cryptography PKC. Berlin: Springer, 2013. 143-161. Google Scholar

[65] Farràs O, Hansen T, Kaced T, et al. Optimal non-perfect uniform secret sharing schemes. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 217-234. Google Scholar

[66] Boyle E, Gilboa N, Ishai Y. Function secret sharing. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 337-367. Google Scholar

[67] Jarecki S, Kiayias A, Krawczyk H. Round-optimal password-protected secret sharing and t-pake in the password-only model. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2014. 233-253. Google Scholar

[68] Cramer R, Damgard I B, Döttling N, et al. Linear secret sharing schemes from error correcting codes and universal hash functions. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 313-336. Google Scholar

[69] Goldwasser S, Micali S, Rackoff C. The knowledge complexity of interactive proof-systems. In: Proceedings of the 17th Annual ACM Symposium on Theory of Computing. New York: ACM, 1985. 291-304. Google Scholar

[70] De Santis A, Micali S, Persiano G. Non-interactive zero-knowledge proof systems. In: Advances in Cryptology CRYPTO. Berlin: Springer, 1988. 52-72. Google Scholar

[71] BFM M B, Feldman P, Micali S. Non-interactive zero-knowledge proof systems and applications. In: Proceedings of the 20th Annual Symposium on Theory of Computing. New York: ACM, 1988. 103-112. Google Scholar

[72] Deng Y, Lin D D. Instance-dependent verifiable random functions and their application to simultaneous resettability. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2007. 148-168. Google Scholar

[73] Deng Y, Goyal V, Sahai A. Resolving the simultaneous resettability conjecture and a new non-black-box simulation strategy. In: 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS’09), Atlanta, 2009. 251-260. Google Scholar

[74] Yao C C, Yung M, Zhao Y L. Concurrent Knowledge Extraction in Public-Key Models. J Cryptology, in press, doi:10.1007/s00145-014-9191-z. Google Scholar

[75] Goyal V, Jain A, Ostrovsky R, et al. Constant-round concurrent zero knowledge in the bounded player model. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2013. 21-40. Google Scholar

[76] Unruh D. Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 755-784. Google Scholar

[77] Kiltz E, Wee H. Quasi-adaptive nizk for linear subspaces revisited. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 101-128. Google Scholar

[78] Yao A. Protocols for secure computations. FOCS. 1982, 82: 160-164. Google Scholar

[79] Goldreich O, Micali S, Wigderson A. How to play any mental game. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing. New York: ACM, 1987. 218-229. Google Scholar

[80] Garay J, Kiayias A, Leonardos N. The bitcoin backbone protocol: analysis and applications. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 281-310. Google Scholar

[81] Asharov G, Lindell Y, Schneider T, et al. More efficient oblivious transfer extensions with security for malicious adversaries. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 2015. 673-701. Google Scholar

[82] Goldwasser S. Multi party computations: past and present. In: Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing. New York: ACM, 1997. 1-6. Google Scholar

[83] Kiyoshima S. Round-efficient black-box construction of composable multi-party computation. In: Advances in Cryptology-CRYPTO. Berlin: Springer, 2014. 351-368. Google Scholar

[84] Ishai Y, Ostrovsky R, Zikas V. Secure multi-party computation with identifiable abort. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 369-386. Google Scholar

[85] Beimel A, Gabizon A, Ishai Y, et al. Non-interactive secure multiparty computation. In: Advances in Cryptology CRYPTO. Berlin: Springer, 2014. 387-404. Google Scholar

[86] Wang C, Ren K, Wang J. Secure and practical outsourcing of linear programming in cloud computing. In: Proceedings of IEEE INFOCOM’11, Shanghai, 2011. 820-828. Google Scholar

[87] Gentry C, Halevi S, Raykova M, et al. Outsourcing private ram computation. In: IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), Philadelphia, 2014. 404-413. Google Scholar

[88] Sheng B, Li Q. Verifiable privacy-preserving sensor network storage for range query. IEEE Trans Mobile Comput, 2011, 10: 1312-1326. Google Scholar

[89] Cui H, Mu Y, Au M H. Proof of retrievability with public verifiability resilient against related-key attacks. IET Inform Secur, 2014, 9: 43-49. Google Scholar

[90] Kocher P C. Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Advances in Cryptology CRYPTO. Berlin: Springer, 1996. 104-113. Google Scholar

[91] Kelsey J, Schneier B,Wagner D, et al. Side channel cryptanalysis of product ciphers. In: Computer Security ESORICS. Berlin: Springer, 1998. 97-110. Google Scholar

[92] Dhem J F, Koeune F, Leroux P A, et al. A practical implementation of the timing attack. In: Smart Card Research and Applications. Berlin: Springer, 2000. 167-182. Google Scholar

[93] Boneh D, DeMillo R A, Lipton R J. On the importance of checking cryptographic protocols for faults. In: Advances in Cryptology EUROCRYPT. Berlin: Springer, 1997. 37-51. Google Scholar

[94] Joye M, Lenstra A K, Quisquater J J. Chinese remaindering based cryptosystems in the presence of faults. J Cryptol, 1999, 12: 241-245. Google Scholar

[95] Kocher P, Jaffe J, Jun B. Differential power analysis. In: Advances in Cryptology CRYPTO. Berlin: Springer, 1999. 388-397. Google Scholar

[96] Quisquater J J, Samyde D. A new tool for non-intrusive analysis of smart cards based on electromagnetic emissions. In: Eurocrypt 2000 Rump Session, Bruges (Brugge), 2000. Google Scholar

[97] Gandolfi K, Mourtel C, Olivier F. Electromagnetic analysis: concrete results. In: Cryptographic Hardware and Embedded Systems-CHES. Berlin: Springer, 2001. 251-261. Google Scholar

[98] Belaid S, Fouque P A, Gérard B. Side-Channel Analysis of Multiplications in GF(2128). In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2014. 306-325. Google Scholar

[99] LomnéV, Prouff E, Roche T. Behind the scene of side channel attacks. In: Advances in Cryptology ASIACRYPT. Berlin: Springer, 2013. 506-525. Google Scholar

[100] Petit C, Standaert F X, Pereira O, et al. A block cipher based pseudo random number generator secure against side-channel key recovery. In: Proceedings of the ACM Symposium on Information Computer and Communications Security. New York: ACM, 2008. 56-65. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1