SCIENTIA SINICA Informationis, Volume 46, Issue 7: 899-912(2016) https://doi.org/10.1360/N112015-00272

An anti-jamming DOA estimation method with space hopping

More info
  • ReceivedNov 11, 2015
  • AcceptedDec 28, 2015
  • PublishedJun 20, 2016


The conventional subspace method cannot accurately estimate the direction of arrival (DOA) of the signal with the presence of a jammer close to it because their combined channel matrix rank is deficient. The paper proposes a novel anti-jamming DOA estimation method by introducing an artificially controllable space-hopping channel and space-hopping pattern. The method causes the equivalent spatial channel of the signal to change dynamically in a symbol cycle, which can promote the channel difference between the jammer and signal source. Therefore, the method can prevent the jammer from influencing the signal, and improve the resolution of the DOA estimation. Because N hops are equivalently regarded as spawning N pairs of virtual arrays in space, the virtual elements and the subspace dimension are greatly increased, which can greatly improve the performance of DOA estimation. The simulation results verify the effectiveness of the algorithm.

Funded by







东南大学移动通信国家重点实验室开放研究基金资助课题(课题 2013D09)


[1] Kazemitabar S J. Coping with Interference in Wireless Networks. New York: Springer, 2010. 132-175. Google Scholar

[2] You X H, Pan Z W, Gao X Q, et al. The 5G mobile communication: the development trends and its emerging key techniques. Sci Sin Inform, 2014, 44: 551-563 [尤肖虎, 潘志文, 高西奇, 等. 5G 移动通信发展趋势与若干关键技术. 中国科学: 信息科学, 2014, 44: 551-563]. Google Scholar

[3] Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans Antenn Propag, 1986, 34: 276-280 CrossRef Google Scholar

[4] Zhou C, Haber F, Jaggard, et al. A resolution measure for the MUSIC algorithm and its application to plane wave arrivals contaminated by coherent interference. IEEE Trans Signal Process, 1992, 39: 454-463. Google Scholar

[5] Roy R, Paulraj A, Kailath T. ESPRIT -- a subspace rotation approach to estimation of parameters of Cisoids in noise. IEEE Trans ASSP, 1986, 34: 1340-1344. Google Scholar

[6] Roy R, Kailath T. ESPRIT -- estimation of signal parameters via rotational invariance techniques. IEEE Trans ASSP, 1989, 37: 984-995. Google Scholar

[7] Yin Q Y, Zou L H, Robert W N. A high resolution approach to 2-D signal parameter estimation -- DOA matrix method. J China Institute Commun, 1991, 12: 1-7 [殷勤业, 邹理和, Robert W N. 一种高分辨率二维信号参数估计方法--- 波达方向矩阵法. 通信学报, 1991, 12: 1-7]. Google Scholar

[8] Jin L, Yin Q Y. Space-time DOA matrix method. Acta Electronica Sinica, 2000, 28: 8-12 [金梁, 殷勤业. 时空DOA矩阵方法. 电子学报, 2000, 28: 8-12]. Google Scholar

[9] Yang Z Q, Li S M, Lü J X. Array extension based on time-space processing and suppression of same-frequency interference. J Electron Inf Tech, 2002, 24: 656-660 [杨正权, 李思敏, 吕家祥. 基于时空处理的阵列扩展及同频干扰抑制. 电子与信息学报, 2002, 24: 656-660]. Google Scholar

[10] Porat B, Friedlander B. Direction finding algorithms based on high-order statistics. IEEE Trans Signal Process, 1991, 39: 2016-2023 CrossRef Google Scholar

[11] Wei P, Xiao X C, Li L M. The fourth-order cumulants based spectral estimation method and its application to direction-finding. J Electron, 1995, 17: 243-249 [魏平, 肖先赐, 李乐民. 基于四阶景积量特征分解的空间谱估计侧向方法. 电子科学学刊, 1995, 17: 243-249]. Google Scholar

[12] Ding Q, Wei P, Xiao X C. Estimation and analysis of DOA based on fourth-order cumulant. Acta Electron Sinica, 1999, 27: 25-28 [丁齐, 魏平, 肖先赐. 基于四阶累积量的DOA估计方法及其分析. 电子学报, 1999, 27: 25-28]. Google Scholar

[13] Yang J, Liao G S. A spatial sparsity-based DOA estimation method in nested MIMO radar. J Electron Inf Tech, 2014, 36: 2698-2704 [杨杰, 廖桂生. 基于空域稀疏性的嵌套MIMO雷达DOA估计算法. 电子与信息学报, 2014, 36: 2698-2704]. Google Scholar

[14] Calson B D. Covarianee matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans Aerospace Electron Syst, 1988, 24: 397-401 CrossRef Google Scholar

[15] Hiemstra J D, Wippert M E, Goldstein J S, et al. Applieation of the L-curse technique to loading level determination in adaptive beamforming. IEEE Trans Signal Process, 1993, 43: 1261-1266. Google Scholar

[16] Mestre X, Lagunas M A. Finite sample size effect on minimum variance beamformers optimum diagonal loading factor for large arrays. IEEE Trans Signal Process, 2006, 54: 69-82 CrossRef Google Scholar

[17] Yang H-W, Huang J-G, Liu C. A modified diagonal loading adaptive beaming forming method. Comput Simulat, 2010, 27: 318-321 [杨花卫, 黄建国, 刘从. 一种改进的可变对角加载自适应波束形成算法. 计算机仿真, 2010, 27: 318-321]. Google Scholar

[18] Yin Q Y, Jia S Q, Zuo S L, et al. A distributed multi-antenna space hopping transceiver technique (I). J Xi'an Jiaotong Univ, 2013, 47: 1-6 [殷勤业, 贾曙乔, 左莎琳, 等. 分布式多天线跳空收发技术(I). 西安交通大学学报, 2013, 47: 1-6]. Google Scholar

[19] Yin Q Y, Zhang J G, Zheng T X, et al. A distributed multi-antenna space hopping transceiver technique (II). Xi'an Jiaotong Univ, 2013, 47: 1-6 [殷勤业, 张建国, 郑通兴, 等. 分布式多天线跳空收发技术(II). 西安交通大学学报, 2013, 47: 1-6]. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号