SCIENTIA SINICA Informationis, Volume 47, Issue 1: 99-113(2017) https://doi.org/10.1360/N112016-00013

Anti-jamming pulse diversity radar with quadrature \\compressive sampling}{Anti-jamming pulse diversity radar with quadrature compressive sampling

More info
  • ReceivedJan 16, 2016
  • AcceptedApr 14, 2016
  • PublishedOct 25, 2016


Quadrature Compressive Sampling radar is a newly introduced radar for pulse Doppler processing with sub-Nyquist samples. This paper considers diverse transmitting pulses and proposes a scheme to perform the estimation of targets in the presence of a repeat jammer. The scheme first performs whitening processing on sub-Nyquist samples to suppress repeat jammers, and then with the principle of orthogonal matching pursuit, it estimates the targets by iteratively performing matched filter and discrete Fourier transform on sub-Nyquist samples in a coherent processing interval. The theoretical analyses conducted on the capability of rejecting the repeat jammers, reveal that the signal to interference plus noise ratio, after whitening processing, almost approaches to the input signal to noise ratio and is not affected by the strength of the repeat jammers. The simulation results further validate the effectiveness of the proposed scheme.

Funded by





[1] Li N J, Zhang Y T. A survey of radar ECM and ECCM. IEEE Trans Aerosp Electron Syst, 1995, 31: 1110-1120 CrossRef Google Scholar

[2] Skolnik M I. Radar Handbook. New York: McGraw-Hill, 2005. Google Scholar

[3] Berger S D. Digital radio frequency memory linear range gate stealer spectrum. IEEE Trans Aerosp Electron Syst, 2003, 39: 725-735 CrossRef Google Scholar

[4] Soumekh M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization. IEEE Trans Aerosp Electron Syst, 2006, 42: 191-205 CrossRef Google Scholar

[5] Lin K. Anti-jamming MTI radar using variable pulse-codes. Dissertation for M.S. Degree. Cambridge: Massachusetts Institute of Technology, 2002. Google Scholar

[6] Garmatyuk D S, Narayanan R M. ECCM capabilities of a ultrawideband bandlimited random noise imaging radar. IEEE Trans Aerosp Electron Syst, 2002, 38: 1243-1255 CrossRef Google Scholar

[7] Zhang J D, Zhu D Z, Zhang G. New antivelocity deception jamming technique using pulses with adaptive initial phases. IEEE Trans Aerosp Electron Syst, 2013, 49: 1290-1300 CrossRef Google Scholar

[8] Higgins T, Blunt S D, Shackelford A K. Time-range adaptive processing for pulse agile radar. In: Proceedings of International Waveform Diversity and Design Conference, Niagara Falls, 2010. 115-120. Google Scholar

[9] Blunt S D, Gerlach K. Adaptive pulse compression via MMSE estimation. IEEE Trans Aerosp Electron Syst, 2006, 42: 572-584 CrossRef Google Scholar

[10] Jenho T, Steinberg B D. Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique. IEEE Trans Antenn Propag, 1998, 36: 543-556. Google Scholar

[11] Liu C, Xi F, Chen S Y, et al. Pulse-Doppler signal processing with quadrature compressive sampling. IEEE Trans Aerosp Electron Syst, 2015, 51: 1217-1230 CrossRef Google Scholar

[12] Donoho D L. Compressed sensing. IEEE Trans Inf Theory, 2006, 52: 1289-1306 CrossRef Google Scholar

[13] Baraniuk R G. Compressive sensing. IEEE Signal Process Mag, 2007, 24: 118-121. Google Scholar

[14] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52: 489-509 CrossRef Google Scholar

[15] Juhwan Y, Turnes C, Nakamura E B, et al. A compressed sensing parameter extraction platform for radar pulse signal acquisition. IEEE J Emerg Sel Topics Circ Syst, 2012, 2: 626-638 CrossRef Google Scholar

[16] Mishali M, Elder Y C, Dounaevsky O, et al. Xampling: analog to digital at sub-Nyquist rates. IET Circ Device Syst, 2011, 5: 8-20 CrossRef Google Scholar

[17] Xi F, Chen S Y, Liu Z. Quadrature compressive sampling for radar echo signals. In: Proceedings of International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, 2011. 1-5. Google Scholar

[18] Xi F, Chen S Y, Liu Z. Quadrature compressive sampling for radar signals. IEEE Trans Signal Process, 2014, 62: 2787-2802 CrossRef Google Scholar

[19] Guerci J R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003. Google Scholar

[20] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory, 2007, 53: 4655-4666 CrossRef Google Scholar

[21] Anitori L, Maleki A, Otten M, et al. Design and analysis of compressed sensing radar detectors. IEEE Trans Signal Process, 2013, 61: 813-827 CrossRef Google Scholar

[22] Pollock B, Goodman N A. Detection performance of compressively sampled radar signals. In: Proceedings of IEEE Radar Conference, Kansas City, 2011. 1117-1122. Google Scholar

[23] Liu Y, Wu Q S, Sun Q C, et al. Parameter estimation of moving targets in the SAR system with a low PRF sampling rate. Sci Sin Inf Sci, 2011, 41: 1517-1528 [刘燕, 武其松, 孙光才, 等. 低重频采样SAR系统中地面运动目标参数估计. 中国科学: 信息科学, 2011, 41: 1517-1528]. Google Scholar

[24] Smith G E, Diethe T, Hussian Z, et al. Compressed sampling for pulse Doppler radar. In: Proceedings of IEEE Radar Conference, Washington, 2010. 887-892. Google Scholar

[25] Herman M A, Strohmer T. High-resolution radar via compressed sensing. IEEE Trans Signal Process, 2009, 57: 2275-2284 CrossRef Google Scholar

[26] Zhou H F, Tang T, Li Y, et al. Wide aperture SAR imaging based on compressive sensing. Sci Sin Inform, 2014, 44: 1021-1035 [周汉飞, 唐涛, 李禹, 等. 基于压缩感知的宽孔径SAR成像. 中国科学: 信息科学, 2014, 44: 1021-1035]. Google Scholar

[27] Wang H X, Liang Y, Xing M D, et al. ISAR imaging via sparse frequency-stepped chirp signal. Sci Sin Inf Sci, 2011, 41: 1529-1540 [王虹现, 梁毅, 邢孟道, 等. 基于稀疏线性调频步进信号的ISAR成像. 中国科学: 信息科学, 2011, 41: 1529-1540]. Google Scholar

[28] Rao G, Peng Y, Xu Z B. Robust sparse and low-rank matrix decomposition based on ${{S}_{1/2}}$ modeling. Sci Sin Inform, 2013, 43: 733-748 [饶过, 彭毅, 徐宗本. 基于${{S}_{1/2}}$建模的稳健稀疏-低秩矩阵分解. 中国科学: 信息科学, 2013, 43: 733-748]. Google Scholar

[29] Liu C, Xi F, Chen S Y, et al. Anti-jamming target detection of pulsed-type radars in QuadCS domian. In: Proceedings of IEEE International Conference on Digital Signal Processing, Singapore, 2015. 75-79. Google Scholar

[30] Richards M A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005. Google Scholar

[31] Ho K C, Chan Y T, Inkol R. A digital quadrature demodulation system. IEEE Trans Aerosp Electron Syst, 1996, 32: 1218-1227 CrossRef Google Scholar

[32] Xi F, Chen S Y, Liu Z. Quardrature compressive sampling for radar signals: output noise and robust reconstruction. In: Proceedings of IEEE China Summit and International Conference on Signal and Information Processing, Xi'an, 2014. 790-794. Google Scholar

[33] Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J Sel Topics Signal Process, 2010, 4: 310-316 CrossRef Google Scholar

[34] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM J Sci Comput, 1998, 20: 33-61 CrossRef Google Scholar

[35] Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B, 1996, 58: 267-288. Google Scholar

[36] Shihao J, Ya X, Carin L. Bayesian compressive sensing. IEEE Trans Signal Process, 2008, 56: 2346-2356 CrossRef Google Scholar

[37] Trees H L V. Detection Estimation and Modulation Theory, Part I. New York: Wiley-Interscience, 2001. Google Scholar

[38] Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge University Press, 1987. Google Scholar

[39] Fyhn K, Duarte M F, Jensen S H. Compressive parameter estimation for sparse translation-invariant signals using polar interpolation. IEEE Trans Signal Process, 2014, 63: 870-881. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号