logo

SCIENTIA SINICA Informationis, Volume 46, Issue 8: 1136-1155(2016) https://doi.org/10.1360/N112016-00040

Ultrahigh-resolution and high-sensitive optical detection methods and technologies

More info
  • ReceivedFeb 29, 2016
  • AcceptedJun 1, 2016

Abstract

Ultrahigh-resolution and high-sensitive optical detection methods and technologies not only allow us to obtain information about the microscopic composition of materials, but also provide a foundation for high-precision optical fabrication and high-precision 3D printing. This paper presents a brief introduction and analysis of the history, current status, and future trends for several important optical detection methods and technologies, including ultrahigh-resolution and high-sensitive optical imaging technology, optical surface detection with sub-nanometer precision, precise 3D spatial information extraction and precision measurement technology, and ultra-sensitive high-precision optical spectroscopy. After considering China's future strategic needs, we give advice and our perspectives on several ultrahigh-resolution and high-sensitive optical detection methods and technologies to which particular intense attention should be directed during China's 13th Five-Year Plan period.


References

[1] Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem, 2009, 78: 993-1016 CrossRef Google Scholar

[2] Sousa A A, Kruhlak M J. Nanoimaging: Methods and Protocols. Heidelberg: Humana Press, 2013. Google Scholar

[3] Weissleder R, Pittet M J. Imaging in the era of molecular oncology. Nature, 2008, 452: 580-589 CrossRef Google Scholar

[4] Conway J R W, Carragher N O, Timpson P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer, 2014, 14: 314-328 CrossRef Google Scholar

[5] Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell, 2010, 143: 1047-1058 CrossRef Google Scholar

[6] Lakadamyali M. Super-resolution microscopy: going live and going fast. Chem Phys Chem, 2014, 15: 630-636. Google Scholar

[7] Fernandez D C, Bhargavam R, Hewitt S M, et al. Infrared spectroscopic imaging for histopathologic recognition. Nat Biotech, 2005, 23: 469-474 CrossRef Google Scholar

[8] Werle P, Slemr F, Maurer K, et al. Near-and mid-infrared laser-optical sensors for gas analysis. Opt Lasers Eng, 2002, 37: 101-114 CrossRef Google Scholar

[9] Hu J. Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. Opt Express, 2010, 18: 22174-22186 CrossRef Google Scholar

[10] Cremer C, Masters B R. Resolution enhancement techniques in microscopy. Euro Phys J H, 2013, 38: 281-344 CrossRef Google Scholar

[11] Weisenburger S, Sandoghdar V. Light microscopy: an ongoing contemporary revolution. Contemp Phys, 2015, 56: 123-143 CrossRef Google Scholar

[12] Eggeling C, Willig K I, Sahl S J, et al. Lens-based fluorescence nanoscopy. Quarterly Rev Biophys, 2015, 48: 178-243 CrossRef Google Scholar

[13] Cox G C. Optical Imaging Techniques in Cell Biology. 2nd ed. Boca Raton: CRC Press, 2012. Google Scholar

[14] Rossy J, Pageon S V, Davis D M, et al. Super-resolution microscopy of the immunological synapse. Curr Opin Immunol, 2013, 25: 307-312 CrossRef Google Scholar

[15] Maglione M, Sigrist S J. Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat Neurosci, 2013, 16: 790-797 CrossRef Google Scholar

[16] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 1994, 19: 780-782 CrossRef Google Scholar

[17] Chi K R. Super-resolution microscopy: breaking the limits. Nat Methods, 2009, 6: 15-18 CrossRef Google Scholar

[18] Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA, 2000, 97: 8206-8210 CrossRef Google Scholar

[19] Westphal V, Rizzoli S O, Lauterbach M A, et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science, 2008, 320: 246-249 CrossRef Google Scholar

[20] Berning S, Willig K I, Steffens H, et al. Nanoscopy in a living mouse brain. Science, 2012, 335: 551-249 CrossRef Google Scholar

[21] Chen W, Xiao F, Liu L, et al. Model design and parameter optimization of stimulated emission depletion fluorescence microscopy. Acta Opt Sin, 2006, 26: 720-725. Google Scholar

[22] Hao X, Kuang C, Gu Z, et al. Optical super-resolution by subtraction of time-gated images. Opt Lett, 2013, 38: 1001-1003 CrossRef Google Scholar

[23] Liu Y, Ding Y, Alonas E, et al. Achieving lambda/10 resolution CW STED nanoscopy with a Ti: sapphire oscillator. PLoS One, 2012, 7: e40003-1003 CrossRef Google Scholar

[24] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc-Oxford, 2000, 198: 82-87 CrossRef Google Scholar

[25] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA, 2005, 102: 13081-13086 CrossRef Google Scholar

[26] Li D, Shao L, Chen B C, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 2015, 349: aab3500-13086 CrossRef Google Scholar

[27] Dan D, Lei M, Yao B L, et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy. Sci Rep, 2013, 3: 1116. Google Scholar

[28] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006, 313: 1642-1645 CrossRef Google Scholar

[29] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 2006, 3: 793-795 CrossRef Google Scholar

[30] Heilemann M, van de Linde S, Schuttpelz M, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl, 2008, 47: 6172-6176 CrossRef Google Scholar

[31] Small A, Stahlheber S. Fluorophore localization algorithms for super-resolution microscopy. Nat Methods, 2014, 11: 267-279 CrossRef Google Scholar

[32] Shtengel G, Galbraith J A, Galbraith C G, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci USA, 2009, 106: 3125-3130 CrossRef Google Scholar

[33] Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 2008, 319: 810-813 CrossRef Google Scholar

[34] Shroff H, Galbraith C G, Galbraith J A, et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA, 2007, 104: 20308-20313 CrossRef Google Scholar

[35] Bates M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science, 2007, 317: 1749-1753 CrossRef Google Scholar

[36] Shroff H, Galbraith C G, Galbraith J A, et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods, 2008, 5: 417-423 CrossRef Google Scholar

[37] Zhang M, Chang H, Zhang Y, et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods, 2012, 9: 727-729 CrossRef Google Scholar

[38] Chang H, Zhang M, Ji W, et al. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci USA, 2012, 109: 4455-4460 CrossRef Google Scholar

[39] Huang Z L, Zhu H, Long F, et al. Localization-based super-resolution microscopy with an sCMOS camera. Opt Express, 2011, 19: 19156-19168 CrossRef Google Scholar

[40] Long F, Zeng S, Huang Z L. Localization-based super-resolution microscopy with an sCMOS camera part II: experimental methodology for comparing sCMOS with EMCCD cameras. Opt Express, 2012, 20: 17741-17759 CrossRef Google Scholar

[41] Quan T, Li P, Long F, et al. Ultra-fast, high-precision image analysis for localization-based super resolution microscopy. Opt Express, 2010, 18: 11867-11876 CrossRef Google Scholar

[42] Wang Y, Quan T, Zeng S, et al. PALMER: a method capable of parallel localization of multiple emitters for high-density localization microscopy. Opt Express, 2012, 20: 16039-16049 CrossRef Google Scholar

[43] Li C, Yan H, Zhao L X, et al. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio. Nat Commun, 2014, 5: 5709-16049 CrossRef Google Scholar

[44] Pan D, Hu Z, Qiu F, et al. A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging. Nat Commun, 2014, 5: 5573-16049 CrossRef Google Scholar

[45] Li H, Chen D, Xu G, et al. Three dimensional multi-molecule tracking in thick samples with extended depth-of-field. Opt Express, 2015, 23: 787-794 CrossRef Google Scholar

[46] Yu B, Chen D, Qu J, et al. Fast Fourier domain localization algorithm of a single molecule with nanometer precision. Opt Lett, 2011, 36: 4317-4319 CrossRef Google Scholar

[47] Chen D, Yu B, Qu J, et al. Background suppression by axially selective activation in single-molecule localization microscopy. Opt Lett, 2010, 35: 886-888 CrossRef Google Scholar

[48] Kanchanawong P, Shtengel G, Pasapera A M, et al. Nanoscale architecture of integrin-based cell adhesions. Nature, 2010, 468: 580-584 CrossRef Google Scholar

[49] Dani A, Huang B, Bergan J, et al. Superresolution imaging of chemical synapses in the brain. Neuron, 2010, 68: 843-856 CrossRef Google Scholar

[50] Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science, 2013, 339: 452-456 CrossRef Google Scholar

[51] Durisic N, Cuervo L L, Lakadamyali M. Quantitative super-resolution microscopy: pitfalls and strategies for image analysis. Curr Opin Chem Biol, 2014, 20: 22-28 CrossRef Google Scholar

[52] Deschout H, Shivanandan A, Annibale P, et al. Progress in quantitative single-molecule localization microscopy. Histochem Cell Biol, 2014, 142: 5-17 CrossRef Google Scholar

[53] Stelzer E H K. Light-sheet fluorescence microscopy for quantitative biology. Nat Methods, 2015, 12: 23-26. Google Scholar

[54] Reynaud E G, Peychl J, Huisken J, et al. Guide to light-sheet microscopy for adventurous biologists. Nat Methods, 2015, 12: 30-34. Google Scholar

[55] Huisken J, Swoger J, Del Bene F, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 2004, 305: 1007-1009 CrossRef Google Scholar

[56] Keller P J, Ahrens M B. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron, 2015, 85: 462-483 CrossRef Google Scholar

[57] Planchon T A, Gao L, Milkie D E, et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods, 2011, 8: 417-423 CrossRef Google Scholar

[58] Vettenburg T, Dalgarno H I C, Nylk J, et al. Light-sheet microscopy using an Airy beam. Nat Methods, 2014, 11: 541-544 CrossRef Google Scholar

[59] Kumar A, Wu Y, Christensen R, et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat Protocols, 2014, 9: 2555-2573 CrossRef Google Scholar

[60] Tomer R, Khairy K, Amat F, et al. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods, 2012, 9: 755-763 CrossRef Google Scholar

[61] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 2014, 346: 1257998-763 CrossRef Google Scholar

[62] Zong W, Zhao J, Chen X, et al. Large-field high-resolution two-photon digital scanned light-sheet microscopy. Cell Res, 2015, 25: 254-257 CrossRef Google Scholar

[63] Yang Z, Mei L, Xia F, et al. Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish. Biomed Opt Express, 2015, 6: 1797-1811 CrossRef Google Scholar

[64] Wang L H V, Hu S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science, 2012, 335: 1458-1462 CrossRef Google Scholar

[65] Wang L H V, Gao L. Photoacoustic microscopy and computed tomography: from bench to bedside. Annu Rev Biomed Eng, 2014, 16: 155-185 CrossRef Google Scholar

[66] Meng J, Song L. Biomedical photoacoustics in China. Photoacoustics, 2013, 1: 43-48 CrossRef Google Scholar

[67] Yao Y, Xing D, Ueda K, et al. Technique for measurement of photoacoustic waves in situ with ultrasound probe beam. J Appl Phys, 2003, 94: 1278-1281 CrossRef Google Scholar

[68] Yuan Y, Yang S, Xing D. Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer. Appl Phys Lett, 2012, 100: 023702-1281 CrossRef Google Scholar

[69] Zeng Y G, Xing D, Wang Y, et al. Photoacoustic and ultrasonic coimage with a linear transducer array. Opt Lett, 2004, 29: 1760-1762 CrossRef Google Scholar

[70] Li Y, Gong X, Liu C, et al. High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter. J Biomed Opt, 2015, 20: 065006. Google Scholar

[71] Yang Z, Chen J, Yao J, et al. Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo. Opt Express, 2014, 22: 1500-1511 CrossRef Google Scholar

[72] Yang X, Liu Y, Zhu D, et al. Dynamic monitoring of optical clearing of skin using photoacoustic microscopy and ultrasonography. Opt Express, 2014, 22: 1094-1104 CrossRef Google Scholar

[73] Liu Y, Yang X, Zhu D, et al. Optical clearing agents improve photoacoustic imaging in the optical diffusive regime. Opt Lett, 2013, 38: 4236-4239 CrossRef Google Scholar

[74] Deng Z, Yang X, Gong H, et al. Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy. Opt Express, 2012, 20: 7555-7563 CrossRef Google Scholar

[75] Jiang B, Yang X, Liu Y, et al. Multiscale photoacoustic microscopy with continuously tunable resolution. Opt Lett, 2014, 39: 3939-3941 CrossRef Google Scholar

[76] Denk W, Strickler J H, Webb W W. 2-Photon laser scanning fluorescence microscopy. Science, 1990, 248: 73-76 CrossRef Google Scholar

[77] Konig K. Multiphoton microscopy in life sciences. J Microsc, 2000, 200: 83-104 CrossRef Google Scholar

[78] Svoboda K, Yasuda R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron, 2006, 50: 823-839 CrossRef Google Scholar

[79] Xu C, Wise F W. Recent advances in fibre lasers for nonlinear microscopy. Nat Photonics, 2013, 7: 875-882 CrossRef Google Scholar

[80] Horton N G, Wang K, Kobat D, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics, 2013, 7: 205-209 CrossRef Google Scholar

[81] Sinefeld D, Paudel H P, Ouzounov D G, et al. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence. Opt Express, 2015, 23: 31472-31483 CrossRef Google Scholar

[82] Ducourthial G, Leclerc P, Mansuryan T, et al. Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal. Sci Rep, 2015, 5: 18303-31483 CrossRef Google Scholar

[83] Rivera D R, Brown C M, Ouzounov D G, et al. Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue. Proc Natl Acad Sci USA, 2011, 108: 17598-17603 CrossRef Google Scholar

[84] Jiang R, Zhou Z, Lv X, et al. Wide-band acousto-optic deflectors for large field of view two-photon microscope. Rev Sci Instru, 2012, 83: 043709-17603 CrossRef Google Scholar

[85] Li D, Zeng S, Luo Q, et al. Propagation dependence of chirp in Gaussian pulses and beams due to angular dispersion. Opt Lett, 2009, 34: 962-964 CrossRef Google Scholar

[86] Zeng S Q, Lv X, Zhan C, et al. Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism. Opt Lett, 2006, 31: 1091-1093 CrossRef Google Scholar

[87] Nie Y T, Wu Y, Fu F M, et al. Differentiating the two main histologic categories of fibroadenoma tissue from normal breast tissue by using multiphoton microscopy. J Microsc, 2015, 258: 79-85 CrossRef Google Scholar

[88] Wu X, Chen G, Lu J, et al. Label-free detection of breast masses using multiphoton microscopy. PloS One, 2013, 8: e65933-85 CrossRef Google Scholar

[89] Baker M. Laser tricks without labels. Nat Methods, 2010, 7: 261-266 CrossRef Google Scholar

[90] Cheng J X, Xie X S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science, 2015, 350: aaa8870-266 CrossRef Google Scholar

[91] Yue S, Slipchenko M N, Cheng J X. Multimodal nonlinear optical microscopy. Laser Photonics Rev, 2011, 5: 496-512 CrossRef Google Scholar

[92] Peterka D S, Takahashi H, Yuste R. Imaging voltage in neurons. Neuron, 2011, 69: 9-21 CrossRef Google Scholar

[93] Evans C L, Xie X S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem, 2008, 1: 883-909 CrossRef Google Scholar

[94] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett, 1999, 82: 4142-4145 CrossRef Google Scholar

[95] Wang P, Liu B, Zhang D, et al. Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations. Angew Chem Int Ed Engl, 2014, 53: 11787-11792 CrossRef Google Scholar

[96] Freudiger C W, Min W, Saar B G, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 2008, 322: 1857-1861 CrossRef Google Scholar

[97] Hong S, Chen T, Zhu Y, et al. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules. Angew Chem Int Ed Engl, 2014, 53: 5827-5831 CrossRef Google Scholar

[98] Smith B, Naji M, Murugkar S, et al. Portable, miniaturized, fibre delivered, multimodal CARS exoscope. Opt Express, 2013, 21: 17161-17175 CrossRef Google Scholar

[99] Zhang Y Y, Akins M L, Murari K, et al. A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy. Proc Natl Acad Sci USA, 2012, 109: 12878-12883 CrossRef Google Scholar

[100] Weinigel M, Breunig H G, Uchugonova A, et al. Multipurpose nonlinear optical imaging system for in vivo and ex vivo multimodal histology. J Med Imaging, 2015, 2: 016003-12883 CrossRef Google Scholar

[101] Andreana M, Stolow A. Multimodal nonlinear optical microscopy: from biophotonics to geophotonics. Opt Photonics News, 2014, 25: 42-49. Google Scholar

[102] Chen H, Wang H, Slipchenko M N, et al. A multimodal platform for nonlinear optical microscopy and microspectroscopy. Opt Express, 2009, 17: 1282-1290 CrossRef Google Scholar

[103] Eliceiri K W, Berthold M R, Goldberg I G, et al. Biological imaging software tools. Nat Methods, 2012, 9: 697-710 CrossRef Google Scholar

[104] Myers G. Why bioimage informatics matters. Nat Methods, 2012, 9: 659-660 CrossRef Google Scholar

[105] Moerner W E, Kador L. Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett, 1989, 62: 2535-2538 CrossRef Google Scholar

[106] Lord S J, Lee H L D, Moerner W E. Single-molecule spectroscopy and imaging of biomolecules in living cells. Anal Chem, 2010, 82: 2192-2203 CrossRef Google Scholar

[107] Joo C, Balci H, Ishitsuka Y, et al. Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem, 2008, 77: 51-76 CrossRef Google Scholar

[108] Zheng Q, Juette M F, Jockusch S, et al. Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev, 2014, 43: 1044-1056 CrossRef Google Scholar

[109] Walt D R. Optical methods for single molecule detection and analysis. Anal Chem, 2013, 85: 1258-1263 CrossRef Google Scholar

[110] Tinnefeld P. Breaking the concentration barrier. Nat Nanotech, 2013, 8: 480-482 CrossRef Google Scholar

[111] Liu Z, Lavis L D, Betzig E. Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell, 2015, 58: 644-659 CrossRef Google Scholar

[112] Skinner S O, Sepulveda L A, Xu H, et al. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat Protocols, 2013, 8: 1100-1113 CrossRef Google Scholar

[113] Baier C, Stimming U. Imaging single enzyme molecules under in situ conditions. Angew Chem Int Ed Engl, 2009, 48: 5542-5544 CrossRef Google Scholar

[114] Schluecker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl, 2014, 53: 4756-4795 CrossRef Google Scholar

[115] Halas N J, Lal S, Chang W S, et al. Plasmons in strongly coupled metallic nanostructures. Chem Rev, 2011, 111: 3913-3961 CrossRef Google Scholar

[116] Acuna G, Grohmann D, Tinnefeld P. Enhancing single-molecule fluorescence with nanophotonics. FEBS Lett, 2014, 588: 3547-3552 CrossRef Google Scholar

[117] Doerband B, Seitz G. Interferometric testing of optical surfaces at its current limit. Optik, 2001, 112: 392-398 CrossRef Google Scholar

[118] Kechel M L. Advanced interferometry at Carl Zeiss. Proc SPIE, 1992, 1720: 452-455 CrossRef Google Scholar

[119] Sugisaki K, Hasegawa M, Okada M, et al. EUVA's challenges toward 0.1nm accuracy in EUV at-wavelength Interferometry. In: Fringe 2005. Berlin: Springer, 2006. 252-266. Google Scholar

[120] Sugisaki K, Okada M, Zhu Y. Comparisons between EUV at-wavelength metrological methods. Proc SPIE, 2005, 5921: 59210D1-455 CrossRef Google Scholar

[121] Miura T, Murakami K, Suzuki K. Nikon EUVL development progress summary. Proc SPIE, 2010, 7636: 76361G1-455 CrossRef Google Scholar

[122] Medecki H, Tejnil E, et al. Phase-shifting point diffraction interferometer. Opt Lett, 1996, 21: 1526-1528 CrossRef Google Scholar

[123] Takeuchi S, Kakuchi O, Yamazoe K, et al. Point diffraction interferometer for testing EUVL projection optics. Proc SPIE 6151, Emerging Lithographic Technologies X, 61510E, 2006, doi:10.1117/12.656275. Google Scholar

[124] Glatzel H, Ashworth D, Bajuk D. Projection optics for EUVL micro-field exposure tools with 0. 5 NA. Proc SPIE, 2014, 9048: 90481K-1528 CrossRef Google Scholar

[125] Cummings K, Ashworth D, Bremer M. Update on the SEMATECH 0.5 NA extreme ultraviolet lithography (EUVL) microfield exposure tool (MET). Proc SPIE, 2014, 9048: 90481M. Google Scholar

[126] Yu H. Developing strategies for 3D printing in European Union and Asia: an overview. Adv Mater Industry, 2015, 5: 25-30. Google Scholar

[127] Yu H. Developing strategies for 3D printing in USA: an overview. Adv Mate Industry, 2015, 4: 27-35. Google Scholar

[128] Slotwinski J A, Blessing G V. Ultrasonic NDE of sprayed ceramic coatings. Rev Prog Quant Nondestruct Eval, 1996, 15: 1613-1620. Google Scholar

[129] Boas F E, Fleischmann D. Computed tomography artifacts: causes and reduction techniques. Imaging Med, 2012, 4: 229-240 CrossRef Google Scholar

[130] Craeghs T, Clijsters S, Kruth J P, et al. Detection of process failures in layerwise laser melting with optical process monitoring. Phys Procedia, 2021, 39: 753-759. Google Scholar

[131] Energetics Inc. for National Institute of Standards and Technology. Measurement science roadmap for metal-based additive manufacturing. http://www.nist.gov/el/isd/upload/NISTAdd{\_}Mfg{\_}Report{\_}FINAL-2.pdf.. Google Scholar

[132] Slotwinski J A, Garboczi E J, Hebenstreit K M. Porosity measurements and analysis for metal additive manufacturing process control. J Res Nat Inst Stand Tech, 2014, 119: 494-528 CrossRef Google Scholar

[133] Mani M, Feng S, Lane B, et al. Measurement science needs for real-time control of additive manufacturing powder. Bed Fusion Processes, U.S. Department of Commerce. http://dx.doi.org/10.6028/NIST.IR.8036. 2015. Google Scholar

[134] Tinnefeld P, Sauer M. Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. Angew Chem Int Ed Engl, 2005, 44: 2642-2671 CrossRef Google Scholar

[135] Hughes J, Izake E L, Lott W B, et al. Ultra sensitive label free surface enhanced Raman spectroscopy method for the detection of biomolecules. Talanta, 2014, 130: 20-25 CrossRef Google Scholar

[136] Ru E C L, Etchegoin P G. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Amsterdam: Elsevier, 2009. Google Scholar

[137] Adato R, Altug H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat Commun, 2013, 4: 2154. Google Scholar

[138] Zhang R, Zhang Y, Dong Z C, et al. Chemical mapping of a single molecule by plasmon enhanced Raman scattering. Nature, 2013, 498: 82-86 CrossRef Google Scholar

[139] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 2014, 346: 1257998-86 CrossRef Google Scholar

[140] Zhang Y. Theoretical simulations of tip-plasmon enhanced single-molecule spectroscopy. Dissertation for Ph.D. Degree. Hefei: University of Science and Technology of China, 2014. Google Scholar

[141] Xiao L. Functional nanomaterial optical imaging research based on single molecule spectroscopy. Dissertation for Ph.D. Degree. Changsha: Hunan University, 2011. Google Scholar

[142] Tompkins H G, McGahan W A. Spectroscopic Ellipsometry and Reflectometry: a User's Guide. New York: Wiley, 1999. Google Scholar

[143] Deng Y, Li X, Geng Y, et al. Influence of nonpolarizing beam splitters on measurement accuracy in interferometric ellipsometers. Opt Precision Eng, 2012, 20: 2373-2379 CrossRef Google Scholar

[144] Demtroder W. Laser Spectroscopy. 3rd ed. Berlin: Springer-Verlag, 2003. Google Scholar

[145] Rosencwaig A. Photoacoustics and Photoacoustic Spectroscopy. New York: John Wiley {&} Sons, 1980. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号