SCIENTIA SINICA Informationis, Volume 46, Issue 8: 1003-1015(2016) https://doi.org/10.1360/N112016-00062

Industrial process control systems: research status and \\development direction

Tianyou CHAI1,2,3,*
More info
  • ReceivedMar 25, 2016
  • AcceptedJun 13, 2016


On the basis of analysis of the different characteristics between process industries and discrete manufacturing industries, as well as the different targets of smart manufacturing, a meaning for smart optimal manufacturing for process industries aimed at high efficiency and greening is proposed. The developmental direction of industrial process control systems is smart optimal control systems. This paper surveys the research status of control, optimization, fault diagnosis, and self-recovery control methods for process industries and the implementation technology of control systems, and presents the development directions required to realize the vision functions of smart optimal control systems. The direction for further research on industrial process control systems is the theory and technology of intelligent optimal control systems with functions in terms of adaptivity, self-learning, and safe and reliable optimal operation, based on the actual needs of process industries in China. Issues for future research on intelligent optimal control systems are also outlined before concluding the paper.

Funded by





[1] 工业4.0工作组(德) 编; 刘晓龙, 郗振宇, 高金金, 等译. 德国工业 4.0战略计划实施建议. 2013.09. Google Scholar

[2] 乌尔里希$\cdot $森德勒(德) 编; 邓敏, 李现民 译. 工业4.0. 北京: 机械工业出版社, 2014. Google Scholar

[3] Impulse für Wachstum, Beschäftigung und Innovation. Industrie 4.0 und Digitale Wirtschaft. https://www. bmwi.de/BMWi/Redaktion/PDF/I/industrie-4-0-und-digitale-wirtschaft,property=pdf,bereich=bmwi2012,sprache= de,rwb=true.pdf. 2015. Google Scholar

[4] Cyber-physical systems. Program Announcements {&} Information. National Science Foundation. 4201 Wilson Boulevard, Arlington, Virginia 22230, USA. 2008-09-30. Retrieved 2009-07-21. http://www.nsf.gov/publications/ pub\_summ.jsp?ods\_key=nsf08611. Google Scholar

[5] Nie Y, Biegler L T, Wassick J M. Integrated scheduling and dynamic optimization of batch processes using state equipment networks. Aiche J, 2012, 58: 3416-3432 CrossRef Google Scholar

[6] Chai T Y. Challenges of optimal control for plant-wide production processes in terms of control and optimization theories. Acta Autom Sin, 2009, 35: 641-649 [柴天佑. 生产制造全流程优化控制对控制与优化理论方法的挑战. 自动化学报, 2009, 35: 641-649]. Google Scholar

[7] Chai T Y. Operational optimization and feedback control for complex industrial processes. Acta Autom Sin, 2013, 39: 1744-1757 [柴天佑. 复杂工业过程运行优化与反馈控制. 自动化学报, 2013, 39: 1744-1757]. Google Scholar

[8] Chai T Y, Qin S J, Wang H. Optimal operational control for complex industrial processes. Ann Rev Control, 2014, 38: 81-92 CrossRef Google Scholar

[9] Friedland B. Advanced Control System Design. New Jersey: Prentice Hall, 1996. Google Scholar

[10] O'Dwyer A. Handbook of PI and PID Controller Tuning Rules. London: Imperial College Press, 2006. Google Scholar

[11] Han Z G, Wang G Q. Cascade scheme of model free control law and its application. Acta Autom Sin, 2006, 32: 345-352 [韩志刚, 汪国强. 无模型控制律串级形式及其应用. 自动化学报, 2006, 32: 345-352]. Google Scholar

[12] Sugie T, Ono T. An iterative learning control law for dynamical systems. Automatica, 1991, 27: 729-732 CrossRef Google Scholar

[13] Moore K L, Johnson M, Grimble M J. Iterative Learning Control for Deterministic Systems. New York: SpringerVerlag, 1993. Google Scholar

[14] Yager R R, Zadeh L A. An Introduction to Fuzzy Logic Applications in Intelligent Systems. Norwell: Kluwer Academic Publisher, 1992. Google Scholar

[15] Wang L X. Stable adaptive fuzzy control of nonlinear systems. IEEE Trans Fuzzy Syst, 1993, 1: 146-155 CrossRef Google Scholar

[16] Astrom K J, Anton J J, Arzen K E. Expert control. Automatica, 1986, 22: 277-286 CrossRef Google Scholar

[17] Psaltis D, Sideris A, Yamamura A A. A multilayered neural network controller. IEEE Control Syst Mag, 1988, 8: 17-21 CrossRef Google Scholar

[18] Li Z S, Xu M, Zhou Q J. Acta Autom Sin, 1990, 16: 503-509 [李祖枢, 徐鸣, 周其鉴. 一种新型的仿人智能控制器. 自动化学报, 1990, 16: 503-509]. Google Scholar

[19] 吴宏鑫, 王迎春, 邢琰. 基于智能特征模型的智能控制及应用. 中国科学E辑: 技术科学, 2002, 32: 805-816. Google Scholar

[20] Wu H X. Intelligent characteristic model and intelligent control. Acta Autom Sin, 2002, 28: 30-37 [吴宏鑫. 智能特征模型和智能控制. 自动化学报, 2002, 28: 30-37]. Google Scholar

[21] Fu Y, Chai T Y. Nonlinear multivariable adaptive control using multiple models and neural networks. Automatica, 2007, 43: 1101-1110 CrossRef Google Scholar

[22] Fu Y, Chai T Y. Neural-network-based nonlinear adaptive dynamical decoupling control. IEEE Trans Neural Netw, 2007, 18: 921-925 CrossRef Google Scholar

[23] Zhang Y J, Chai T Y, Wang H, et al. An improved estimation method for unmodeled dynamics based on ANFIS and its application to controller design. IEEE Trans Fuzzy Syst, 2013, 21: 989-1005 CrossRef Google Scholar

[24] Chai T Y, Zhai L F, Yue H. Multiple models and neural networks based decoupling control of ball mill coal-pulverizing systems. J Process Control, 2011, 21: 351-366 CrossRef Google Scholar

[25] Chai T Y, Zhang Y J, Wang H, et al. Data based Virtual Un-modeled Dynamics Driven Multivariable Nonlinear Adaptive Switching Control. IEEE Trans Neural Netw, 2011, 12: 2154-2171. Google Scholar

[26] Zhao D Y, Chai T Y, Wang H, et al. Hybrid intelligent control for regrinding process in hematite beneficiation. Control Eng Pract, 2014, 22: 217-230 CrossRef Google Scholar

[27] Chai T Y, Li H B, Wang H. An intelligent switching control for the intervals of concentration and flow-rate of underflow slurry in a mixed separation thickener. In: Proceedings of the 19th IFAC World Congress, Cape Town, 2014. 47: 338-345. Google Scholar

[28] Basak K, Abhilash K S, Ganguly S, et al. On-line optimization of a crude distillation unit with constraints on product properties. Industrial Eng Chem Res, 2002, 41: 1557-1568 CrossRef Google Scholar

[29] Marchetti A, Chachuat B, Bonvin D. Real-time operations optimization of continuous processes. In: Proceedings of the 5th International Conference on Chemical Process Control. Lake Tahoe: American Institute of Chemical Engineering, 1996. 156-164. Google Scholar

[30] Chai T Y, Ding J L, Wu F H. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Eng Pract, 2011, 3: 264-275. Google Scholar

[31] Engell S. Feedback control for optimal process operation. J Process Control, 2007, 17: 203-219 CrossRef Google Scholar

[32] Henson M A. Nonlinear model predictive control: current status and future directions. Comput Chem Eng, 1998, 23: 187-202 CrossRef Google Scholar

[33] Cannon M, Kouvaritakis B, Deshmukh V. Enlargement of polytopic terminal region in NMPC by interpolation and partial invariance. Automatica, 2004, 40: 311-317 CrossRef Google Scholar

[34] Chai T Y, Ding J L, Wang H, et al. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Autom Sin, 2008, 34: 505-515 [柴天佑, 丁进良, 王宏, 等. 复杂工业过程运行的混合智能优化控制方法. 自动化学报, 2008, 34: 505-515]. Google Scholar

[35] Chai T Y, Ding J L, Wu F H. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Eng Pract, 2011, 3: 264-275. Google Scholar

[36] Zhou P, Chai T Y, Sun J. Intelligence-based supervisory control for optimal operation of a DCS-controlled grinding system. IEEE Trans Control Syst Tech, 2013, 21: 162-175 CrossRef Google Scholar

[37] Zhou P, Chai T Y, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Trans Autom Sci Eng, 2009, 6: 730-743 CrossRef Google Scholar

[38] Chai T Y, Zhao L, Qiu J B, et al. Integrated network based model predictive control for setpoints compensation in industrial processes. IEEE Trans Ind Inf, 2013, 9: 417-426 CrossRef Google Scholar

[39] Liu F Z, Gao H J, Qiu J B, et al. Networked multirate output feedback control for setpoints compensation and its application to rougher flotation process. IEEE Trans Ind Electron, 2014, 61: 460-468. Google Scholar

[40] Isermann R, Balle P. Trends in the application of model based fault detection and diagnosis of technical processes. Control Eng Pract, 1997, 5: 709-719 CrossRef Google Scholar

[41] Capisani L M, Ferrara A, Ferreira L A, et al. Manipulator fault diagnosis via higher order sliding-mode observers. IEEE Trans Ind Electron, 2012, 59: 2979-3986 CrossRef Google Scholar

[42] Qin S J. Survey on data-driven industrial process monitoring and diagnosis. Ann Rev Control, 2012, 36: 220-234 CrossRef Google Scholar

[43] Wu Z W, Wu Y J, Chai T Y, et al. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace. IEEE Trans Ind Electron, 2015, 62: 1703-1715 CrossRef Google Scholar

[44] Liu Q, Qin S J, Chai T Y. Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA. IEEE Trans Autom Sci Eng, 2013, 10: 687-698 CrossRef Google Scholar

[45] Liu Q, Qin S J, Chai T Y. Multi-block concurrent PLS for decentralized monitoring of continuous annealing processes. IEEE Trans Ind Electron, 2014, 61: 6429-6437 CrossRef Google Scholar

[46] Dai W, Zhou P, Zhao D Y, et al. Hardware-in-the-loop simulation platform for supervisory control of mineral grinding process. Powder Tech, 2016, 288: 422-434 CrossRef Google Scholar

[47] Dai W, Chai T Y, Yang S. Data-driven optimization control for safety operation of hematite grinding process. IEEE Trans Ind Electron, 2015, 62: 2930-2941 CrossRef Google Scholar

[48] Martin O, Daniele R, Cecilia M. Low cost and high speed embedded two-rail code checker. IEEE Trans Comput, 2005, 54: 153-164 CrossRef Google Scholar

[49] QianY , Liu J, Johnson T M. Efficient embedded speech recognition for very large vocabulary mandarin car-navigation systems. IEEE Trans Consum Electron, 2009, 55: 1496-1500 CrossRef Google Scholar

[50] Munir A, AGordon-Ross A, Ranka S. Multi-core embedded wireless sensor networks: architecture and applications. IEEE Trans Parall Distrib Syst, 2014, 25: 1553-1562 CrossRef Google Scholar

[51] Kim M, Song J H, Kim D, et al. Hybrid partitioned H.264 full high definition decoder on embedded quad-core. IEEE Trans Consum Electron, 2012, 58: 1038-1044. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有