SCIENTIA SINICA Informationis, Volume 46, Issue 8: 1053-1085(2016) https://doi.org/10.1360/N112016-00064

Marine information gathering, transmission, processing, and \\fusion: current status and future trends

More info
  • ReceivedMar 26, 2016
  • AcceptedJun 1, 2016


Marine information gathering, transmission, processing, and fusion play an important role in many areas, such as marine science research, environmental expedition, resource exploitation, and security and defense. Owing to its specific application environment, it has also become a popular information science research area. Like other branches of information science, the development of marine information technology over the last thirty years has benefited significantly from advances and achievements in general information theory. However, the manner in which it highlights the close bonding among propagation physics, signal processing, and the marine environment is seldom seen in other areas. This paper first gives a comprehensive overview of the current status of the theory and methods used in surface target acquisition, underwater target recognition, underwater communications and sea-air integrated information transmission, oceanic remote sensing, and data processing and information fusion. Subsequently, with the aim of helping to advance fundamental research on marine information important scientific problems to be addressed are presented.

Funded by








[1] Zhang R H. The development trend of underwater acoustic technology is osculatory combination of underwater acoustic physics, signal processing and ocean environment. Appl Acoust, 2006, 25: 325-327 [张仁和. 水声物理、信号处理与海洋环境紧密结合是水声技术发展的趋势. 应用声学, 2006, 25: 325-327]. Google Scholar

[2] Scharf L L. Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. Upper Saddle River: Prentice Hall, 1991. Google Scholar

[3] Kay S. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory. Upper Saddle River: Prentice Hall, 1991. Google Scholar

[4] Poor H V, Thomas J B. Advances in Statistical Signal Processing. Stamford: JAI Press Inc, 1993. Google Scholar

[5] Scharf L L. On Unbiasedness and Invariance in Signal Detection Theory. Dissertation for Ph.D. Degree. Washington D C: University of Washington, 1969. Google Scholar

[6] Shannon C E. A mathematical theory of communication. Bell Sys Tech J, 1948, 27: 379-423 CrossRef Google Scholar

[7] Jaynes E T. Information theory and statistical mechanics. Phys Rev, 1957, 106: 620-630 CrossRef Google Scholar

[8] Verdu S. Guest editorial. IEEE Trans Inf Theory, 1998, 44: 2042-2044 CrossRef Google Scholar

[9] Verdu S. Fifty years of Shannon theory. IEEE Trans Inf Theory, 1998, 44: 2057-2078 CrossRef Google Scholar

[10] Wiener N. Selected Papers of Norbert Wiener. Cambridge: MIT Press & SIAM, 1964. Google Scholar

[11] Kalman R E, Bucy R S. New results in linear filtering and prediction theory. J Basic Eng, 1961, 83: 95-108 CrossRef Google Scholar

[12] Candy J V. Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods. Wiley Inter Science, 2009. Google Scholar

[13] Fisher R A. Theory of statistical estimation. Proc Cambridge Phil Soc, 1925, 22: 700-725 CrossRef Google Scholar

[14] Kailath T, Poor H V. Detection of stochastic processes. IEEE Trans Inf Theory, 1998, 44: 2230-2259 CrossRef Google Scholar

[15] Helmberg G. Introduction to Spectral Theory in Hilbert Space. New York: Dover Publications, 2008. Google Scholar

[16] Synowiec J A. Introduction to Hilbert spaces with applications. SIAM Rev, 1993, 35: 341-342 CrossRef Google Scholar

[17] Colton D, Kress R. Inverse acoustic and electromagnetic scattering theory. Appl Math Sci, 1998, 93: 67-110. Google Scholar

[18] Kailath T. RKHS approach to detection and estimation problems I: deterministic signals in Gaussian noise. IEEE Trans Inf Theory, 1971, 17: 530-549 CrossRef Google Scholar

[19] O'Sullivan J A, Blahut R E, Snyder D L. Information-theoretic image formation. IEEE Trans Inf Theory, 1998, 44: 2049-2123. Google Scholar

[20] Chen S, Lan Y. Broadband flextensional transducer with major axis lengthened. Acta Acustica, 2011, 36: 638-644 [陈思, 蓝宇. 长轴加长型宽带弯张换能器. 声学学报, 2011, 36: 638-644]. Google Scholar

[21] Li Q H. New advances of underwater acoustic signal processing. Appl Acoust, 2012, 31: 1-9 [李启虎. 水声信号处理领域新进展. 应用声学, 2012, 31: 1-9]. Google Scholar

[22] Burenkov S V, Gavrilov A N, Uporin A Y, et al. Heard Island feasibility test: long-range sound transmission from Heard Island to Krylov underwater mountain. J Acoust Soc Am, 1994, 96: 2458-2463 CrossRef Google Scholar

[23] Worcester P F, Spindel R C. North pacific acoustic laboratory. J Acoust Soc Am, 2005, 117: 1449-1510. Google Scholar

[24] Li S, Schuliheiss P M. Depth measurement of remote sources using multipath propagation. IEEE J Ocean Eng, 1993, 18: 379-387 CrossRef Google Scholar

[25] Del Balzo D R, Feuillade C, Rowe M M. Effects of water-depth mismatch on matched-field localization in shallow water. J Acoust Soc Am, 1988, 83: 2180-2185 CrossRef Google Scholar

[26] Feillade C, Del Balzo D R, Rowe M M. Environmental mismatch in shallow-water matched field processing: geoacoustic parameter variability. J Acoust Soc Am, 1989, 85: 2354-2364 CrossRef Google Scholar

[27] An L, Wang Z, Lu J. Calculating the waveguide invariant by the 2-D Fourier transform ridges of Lofargram image. J Chin Electron Inf, 2008, 30: 2930-2933. Google Scholar

[28] Li Q. Theoretical analysis and experimental results of interference striation of underwater target noise in shallow water waveguide. Chin J Acoust, 2011, 31: 73-80. Google Scholar

[29] Nehorai A, Padeli E. Acoustic vector-sensor array processing. IEEE Trans Signal Process, 1994, 42: 2481-2491 CrossRef Google Scholar

[30] Lemon S G. Towed array history, 1917-2003. IEEE J Ocean Eng, 2004, 29: 365-373 CrossRef Google Scholar

[31] Ricker D W. Estimation of coherent detection performance for spread scattering in reverberation noise mixtures. J Acoust Soc Am, 2000, 107: 1978-1986 CrossRef Google Scholar

[32] Hlawatsch F. Time-frequency formulation, design, and implementation of time-varying optimal filters for signal estimation. IEEE Trans Signal Process, 2000, 48: 417-432. Google Scholar

[33] Pan X, Li C, Xu Y, et al. Combination of time-reversal focusing and nulling for detection of small targets in strong reverberation environments. IET Radar Sonar Nav, 2014, 8: 9-16 CrossRef Google Scholar

[34] Bhattacharya T K. Neural network-based radar detection for an ocean environment. IEEE Trans Aerosp Electron Syst, 1997, 33: 408-420 CrossRef Google Scholar

[35] Buzzi S, Lops M, Venturino L. Track-before-detect procedures for early detection of moving target from airborne radars. IEEE Trans Aerosp Electron Syst, 2005, 41: 937-954 CrossRef Google Scholar

[36] Hayes M P, Gough P T. Synthetic aperture sonar: a review of current status. IEEE J Ocean Eng, 2009, 34: 207-224 CrossRef Google Scholar

[37] Lee J, Burke M, Hammond J. The theoretical prediction, interpretation and computation of the Fourier-Mellin transform applied to sonar classification of ships. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE Signal Processing Society, Albuquerque, 1990. 2735-2738. Google Scholar

[38] Goldberg D E. Genetic algorithms and Walsh functions: part I, a gentle introduction. Complex Syst, 1989, 3: 129-152. Google Scholar

[39] Alan I C, Atkins P R, Foo K Y, et al. Phase calibration of sonar systems using standard targets and dual-frequency transmission pulses. J Acoust Soc Am, 2011, 130: 1880-1887 CrossRef Google Scholar

[40] Li Q H, Li M, Yang X T. The detection of single frequency component of underwater radiated noise of target: theoretical analysis. Acta Acustica, 2008, 33: 193-196 [李启虎, 李敏, 杨秀庭. 水下目标辐射噪声中单频信号分量的检测: 理论分析. 声学学报, 2008, 33: 193-196]. Google Scholar

[41] Liu G M, Sun C, Yang Y X. Feature extraction of passive sonar target based on two cepstrums. J Northwestern Polytech Univ, 2008, 26: 276-281 [柳革命, 孙超, 杨益新. 两种倒谱特征提取技术在水声目标识别中的应用. 西北工业大学学报, 2008, 26: 276-281]. Google Scholar

[42] Wu G Q, Chen Y Q, Li L Q, et al. The analysis of underwater transient signal and their detection by spectral correlation. Acta Acustica, 2000, 25: 510-515 [吴国清, 陈永强, 李乐强, 等. 水声瞬态信号短时谱形态及谱相关法检测. 声学学报, 2000, 25: 510-515]. Google Scholar

[43] Zhang X Y, Luo L Y. Recent development of passive sonar signal detection. Tech Acoust, 2014, 33: 559-563 [张晓勇, 罗来源. 被动声纳信号检测技术发展. 声学技术, 2014, 33: 559-563]. Google Scholar

[44] Yan S F, Ma Y L. Sensor Array Beampattern Optimization: Theory with Applications. Beijing: Science Press, 2009 [鄢社锋, 马远良. 传感器阵列波束优化设计及应用. 北京: 科学出版社, 2009]. Google Scholar

[45] Yan S F, Ma X C. Designs and implementations of broadband beamformers. Acta Acustica, 2008, 33: 316-326 [鄢社锋, 马晓川. 宽带波束形成器的设计与实现. 声学学报, 2008, 33: 316-326]. Google Scholar

[46] Mio K, Chocheyras Y, Doisy Y. Space time adaptive processing for low frequency sonar. In: Proceedings of OCEANS 2000 MTS/IEEE Conference and Exhibition, Providence, 2000. 1315-1319. Google Scholar

[47] Candy J V. Signal Processing: the Model Based Approach. New York: McGraw-Hill, 1986. Google Scholar

[48] Fizell R G. Application of high-resolution processing to range and depth estimation using ambiguity function methods. J Acoust Soc Am, 1987, 82: 606-613 CrossRef Google Scholar

[49] Livingston E, Diachok O. Estimation of average under-ice reflection amplitudes and phases using matched-field processing. J Acoust Soc Am, 1989, 86: 1909-1919 CrossRef Google Scholar

[50] Hamson R M, Heitmeyer R M. Environmental and system effects on source localization in shallow water by the matched-field processing of a vertical array. J Acoust Soc Am, 1989, 86: 1950-1959 CrossRef Google Scholar

[51] Fueillade C, Kinney W A, Del Balzo D R. Shallow-water matched field localization off Panama City, Florida. J Acoust Soc Am, 1990, 88: 423-433 CrossRef Google Scholar

[52] Richardson A M, Nolte L W. A posteriori probability source localization in an uncertain sound speed, deep ocean environment. J Acoust Soc Am, 1991, 89: 2280-2284 CrossRef Google Scholar

[53] Xu W, Baggeroer A B, Schmidt H. Performance analysis for matched-field source localization: simulations and experimental results. IEEE J Ocean Eng, 2006, 31: 325-344 CrossRef Google Scholar

[54] Xu W, Xiao Z, Yu L. Performance analysis of matched-field source localization under spatially correlated noise field. IEEE J Ocean Eng, 2011, 36: 273-284 CrossRef Google Scholar

[55] Baggeroer A B. Why did applications of MFP fail, or did we not understand how to apply MFP? In: Proceedings of the 1st Conference and Exhibition on Underwater Acoustics, Corfu island, 2013. 41-49. Google Scholar

[56] Sazontov A G, Malekhanov A I. Matched field signal processing in underwater sound channels (Review). Acoust Phys, 2015, 61: 213-230 CrossRef Google Scholar

[57] Cox H. Fundamentals of bistatic active SONAR. In: Underwater Acoustic Data Processing. Berlin: Springer, 1989. 3-24. Google Scholar

[58] Carey W M, Cable P G, Cox H. Shallow water active sonar environmental acoustic issues. J Acoust Soc Am, 1993, 93: 2267. Google Scholar

[59] Zhao J W, Yan Y S, Ding W, et al. The performance and prospect of bi-static sonar. Acoust Electric Eng, 1991, 23: 29-33 [赵俊渭, 阎宜生, 丁纬, 等. 双基地声纳的性能与展望. 声学与电子工程, 1991, 23: 29-33]. Google Scholar

[60] Zhang X F, Zhao J W, Wang R Q, et al. Research on accuracy of localization algorithm for bi-static Sonar. Acta Simulata Systematica Sinica, 2003, 15: 1471-1473 [张小凤, 赵俊渭, 王荣庆, 等. 双基地声纳定位精度和算法研究. 系统仿真学报, 2003, 15: 1471-1473]. Google Scholar

[61] Yang L, Cai Z M. Analysis of detectable region for the bi-static sonar in reverberation background. J Harbin Eng Univ, 2006, 27: 597-602 [杨丽, 蔡志明. 混响背景下双基地声纳的探测范围分析. 哈尔滨工程大学学报, 2006, 27: 597-602]. Google Scholar

[62] Arii M. Ship detection from full polarimetric SAR data at different incidence angles. In: Proceedings of the 3rd International Asia-Pacific Conference on IEEE Synthetic Aperture Radar, Seoul, 2011. 1-4. Google Scholar

[63] Wilson H, Leong H. An estimation and verification of vessel radar cross sections for HF surface wave radar. IEEE Antennas Propag Mag, 2006, 48: 11-16. Google Scholar

[64] Ouchi K. Ship detection by ALOS-PALSAR: an overview. In: Proceedings of the 3rd International Asia-Pacific Conference on IEEE Synthetic Aperture Radar, Seoul, 2011. 1-2. Google Scholar

[65] Tello M, L{ó}pez-Mart{\'\i}nez C, Mallorqui J J. A novel algorithm for ship detection in SAR imagery based on the wavelet transform. IEEE Geosci Remote Sens Lett, 2005, 2: 201-205 CrossRef Google Scholar

[66] Wang Y, Li H, Zhang Y, et al. Marine target detection in quad-pol synthetic aperture radar imagery based on the relative phase of cross-polarized channels. J Appl Remote Sens, 2015, 9: 096092-205 CrossRef Google Scholar

[67] Rey M T, Tunaley J K, Folinsbee J T, et al. Application of Radon transform techniques to wake detection in Seasat-A SAR images. IEEE Trans Geosci Remote Sens, 1990, 28: 553-560 CrossRef Google Scholar

[68] Ai J, Qi X, Yu W, et al. A novel ship wake CFAR detection algorithm based on SCR enhancement and normalized Hough transform. IEEE Geosci Remote Sens Lett, 2011, 8: 681-685 CrossRef Google Scholar

[69] Greidanus H, Kourti N. Findings of the DECLIMS project-detection and classification of marine traffic from space. In: Proceedings of SEASAR, Frascati, 2006. 23-26. Google Scholar

[70] Estable S, Teufel F, Petersen L, et al. Detection and classification of offshore artificial objects in TerraSAR-X images: first outcomes of the DeMarine-DEKO project. In: Proceedings OCEANS 2009 MTS/IEEE Conference and Exhibition, Bremen, 2009. 1-8. Google Scholar

[71] Wu F, Wang C, Zhang B, et al. Study on vessel classification in SAR imagery: a survey. Remote Sens Tech Appl, 2014, 29: 1-8 [吴樊, 王超, 张波, 等. SAR 图像船只分类识别研究进展. 遥感技术与应用, 2014, 29: 1-8]. Google Scholar

[72] Zhu C, Zhou H, Wang R, et al. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features. IEEE Trans Geosci Remote Sens, 2010, 48: 3446-3456 CrossRef Google Scholar

[73] Zhang F, Zhang L, Wu B. Progress of ship detection technology and system based on remote sensing technology in European union. J Remote Sens, 2007, 11: 552-562. Google Scholar

[74] Goferman S, Zelnic-Manor L, Tal A. Context-aware saliency detection. IEEE Trans Pattern Anal, 2012, 34: 1915-1926 CrossRef Google Scholar

[75] Antelo J, Ambrosio G, Gonzalez J, et al. Ship detection and recognition in high-resolution satellite images. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Cape Town, 2009. 514-517. Google Scholar

[76] Bi F K, Liu F, Gao L N. A hierarchical salient-region based algorithm for ship detection in remote sensing images. In: Advances in Neural Network Research and Applications, the series Lecture Notes in Electrical Engineering. New York: Springer, 2010. 67: 729-738. Google Scholar

[77] Perez A, Gonzalez R C. An iterative thresholding algorithm for image segmentation. IEEE Trans Pattern Anal, 1987, 9: 742-751. Google Scholar

[78] Lie W N. Automatic target segmentation by locally adaptive image thresholding. IEEE Trans Image Process, 1995, 4: 1036-1041 CrossRef Google Scholar

[79] Espindola G M, Camara G, Reis I A, et al. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. Int J Remote Sens, 2006, 27: 3035-3040 CrossRef Google Scholar

[80] Zhao Y H, Wu X Q, Wen L Y, et al. Ship target detection scheme for optical remote sensing images. Opto-Electron Eng, 2008, 35: 102-106 [赵英海, 吴秀清, 闻凌云, 等. 可见光遥感图像中舰船目标检测方法. 光电工程, 2008, 35: 102-106]. Google Scholar

[81] Corbane C, Marre F, Petit M. Using SPOT-5 HRG data in panchromatic mode for operational detection of small ships in tropical area. Sensors, 2008, 8: 2959-2973 CrossRef Google Scholar

[82] Maresca S, Braca P, Horstmann J, et al. Maritime surveillance with multiple over-the-horizon HFSW radars: an overview of recent experimentation. IEEE Aerosp Electron Syst Mag, 2015, 30: 4-18 CrossRef Google Scholar

[83] Liu Y, Xu R, Zhang N. Progress in HFSWR research at Harbin Institute of Technology. In: Proceedings of International Radar Conference, Adelaide, 2003. 522-528. Google Scholar

[84] Ji Y G, Zhang J, Wang Y M, et al. Ship detection point association and fusion with dual-frequency HF surface wave radar. Syst Eng Electron, 2014, 36: 266-271 [纪永刚, 张杰, 王祎鸣, 等. 双频地波雷达船只目标点迹关联与融合处理. 系统工程与电子技术, 2014, 36: 266-271]. Google Scholar

[85] Sun W F, Ji Y G, Zhang X Y, et al. Ship target tracking based on adaptive $\alpha$-$\beta$ filter in HFSWR. Adv Marine Sci, 2015, 33: 394-402 [孙伟峰, 纪永刚, 张晓莹, 等. 基于自适应 $\alpha$-$\beta$ 滤波的 HFSWR 目标航迹跟踪. 海洋科学进展, 2015, 33: 394-402]. Google Scholar

[86] Leong H. The potential of bistatic HF surface wave radar system for the surveillance of water-entry area along coastline. In: Proceedings of IEEE International Conference on Radar, Shanghai, 2006. 45: 51-65. Google Scholar

[87] Anna D, Klaus-Werner G, Hermann R, et al. Low power high frequency surface wave radar application for ship detection and tracking. In: Proceedings of IEEE International Conference on Radar. New York: IEEE, 2008. 627-632. Google Scholar

[88] Maresca S, Horstmann J, Grasso R, et al. Performance assessment of HF-radar ship detection. In: Proceedings of International Radar Symposium, Leipzig, 2011. 131-136. Google Scholar

[89] Wang Y M, Zhang J, Ji Y G, et al. CFAR ship detection verification method of HFSWR based on range-Doppler projection of AIS data. Haiyang Xuebao, 2015, 37: 76-82 [王祎鸣, 张杰, 纪永刚, 等. 基于 AIS 距离-多普勒投影的地波雷达 CFAR 检测验证方法. 海洋学报, 2015, 37: 76-82]. Google Scholar

[90] Dzvonkovskaya A, Gurgel K-W, Rohling H, et al. Low power high frequency surface wave radar application for ship detection and tracking. In: Proceedings of International Conference on Radar. New York: IEEE, 2008. 627-632. Google Scholar

[91] Hugh J, Roarty H, Smith M, et al. Real-time beyond the horizon vessel detection. In: Proceedings of SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, Baltimore, 2013. 813-831. Google Scholar

[92] Wen B Y, Shi Y S, Yang J, et al. Target detection using multi-station HFSWR. Chin J Radio Sci, 2015, 30: 535-541 [文必洋, 石阳升, 杨静, 等. 多站高频地波雷达目标检测研究. 电波科学学报, 2015, 30: 535-541]. Google Scholar

[93] Lin M S, Zhang Y G, Yuan X Z. The development course and trend of ocean remote sensing satellite. Haiyang Xuebao, 2015, 37: 1-10 [林明森, 张有广, 袁欣哲. 海洋遥感卫星发展历程与趋势展望. 海洋学报, 2015, 37: 1-10]. Google Scholar

[94] Barrick D, Fernandez V, Ferrer M I, et al. A short-term predictive system for surface currents from a rapidly deployed coastal HF radar network. Ocean Dynam, 2012, 62: 725-740 CrossRef Google Scholar

[95] Ulaby F T, Long D G, Blackwell W J, et al. Microwave Radar and Radiometric Remote Sensing. Ann Arbor: the University of Michigan Press, 2014. Google Scholar

[96] Imperatore P, Riccio D. Geoscience and Remote Sensing, New Achievements. Rijeka: In-Tech, 2010. Google Scholar

[97] Lee Z, Cui T, Sun L. Derivation and application of biogeochemical properties from the measurement of water color: methods and challenges. Acta Laser Biology Sinica, 2014, 23: 481-501. Google Scholar

[98] Lu X, Hu Y, Trepte C, et al. Ocean subsurface studies with the CALIPSO spaceborne lidar. J Geophys Res Ocean, 2014, 119: 4305-4317 CrossRef Google Scholar

[99] Hill V J, Zimmerman R C. Estimates of primary production by remote sensing in the arctic ocean: assessment of accuracy with passive and active sensors. Deep-Sea Res I, 2010, 57: 1243-1254 CrossRef Google Scholar

[100] Liu X D, Wang L, Yang J, et al. Competitiveness analysis for China's ocean acoustic detection technologies. J Ocean Tech, 2015, 34: 80-85 [刘晓东, 王磊, 杨娟, 等. 我国海洋声学探测技术竞争力分析. 海洋技术学报, 2015, 34: 80-85]. Google Scholar

[101] Munk W, Worcester P, Wunsch C. Ocean Acoustic Tomography. Cambridge: Cambridge University Press, 1995. Google Scholar

[102] Dushaw B, Bold G, Chiu C-S, et al. Observing the ocean in the 2000s: a strategy for the role of acoustic tomography in ocean climate observation. In: Observing the Oceans in the 21st Century. Melbourne: GODAE Project Office and Bureau of Meteorology, 2001. 391-418. Google Scholar

[103] Zhao H F, Wang F Y, Zhu X H, et al. Ocean acoustic tomography: current progress and future prospect. J Ocean Tech, 2015, 34: 69-74 [赵航芳, 汪非易, 朱小华, 等. 海洋声学层析研究现状与展望. 海洋技术学报, 2015, 34: 69-74]. Google Scholar

[104] Worcester P F, Dzieciuch M A, Mercer A J, et al. The north pacific acoustic laboratory deep-water acoustic propagation experiments in the Philippine Sea. J Acoust Soc Am, 2013, 134: 3359-3375 CrossRef Google Scholar

[105] Wang T, Xu W. Sparsity-based approach for ocean acoustic tomography using learned dictionaries. In: Proceedings of OCEANS MTS/IEEE Conference and Exhibition, Shanghai, 2016. 1-6. Google Scholar

[106] Makris N C. Imaging ocean-basin reverberation via inversion. J Acoust Soc Am, 1993, 94: 983-993 CrossRef Google Scholar

[107] Ratilal P, Lai Y, Symonds D T, et al. Long range acoustic imaging of the continental shelf environment: the acoustic clutter Reconnaissance experiment 2001. J Acoust Soc Am, 2005, 117: 1977-1998 CrossRef Google Scholar

[108] Makris N C, Ratilal P, Symonds D T, et al. Fish population and behavior revealed by instantaneous continental shelf-scale imaging. Science, 2006, 311: 660-663 CrossRef Google Scholar

[109] Makris N C, Ratilal P, Jagannathan S, et al. Critical population density triggers rapid shoal formation in vast oceanic fish shoals. Science, 2009, 323: 1734-1737 CrossRef Google Scholar

[110] Cella M U, Johnstone R, Shuley N. Electromagnetic wave wireless communication in shallow water coastal environment: Theoretical analysis and experimental results. In: Proceedings the 4th ACM International Workshop on UnderWater Networks. New York: ACM, 2009. 1-9. Google Scholar

[111] Stojanovic M. Acoustic (underwater) communications. In: Proakis J G, eds. Encyclopedia of Telecommunications. Hoboken: John Wiley and Sons, 2003. Google Scholar

[112] Anguita D, Brizzolara D, Parodi G, et al. Optical wireless underwater communication for AUV: preliminary simulation and experimental results. In: Proceedings of OCEANS 2011 MTS/IEEE Conference and Exhibition, Santander, 2011. 1-5. Google Scholar

[113] Fletcher A S, Hamilton S A, Moores J D. Undersea laser communication with narrow beams. IEEE Commun Mag, 2015, 11: 49-55. Google Scholar

[114] Liu J T, Chen W B. Feasibility study of laser communications from satellite to submerged platform. Acta Optica Sinica, 2006, 26: 1441-1446 [刘金涛, 陈卫标. 星载激光对水下平台通信可行性研究. 光学学报, 2006, 26: 1441-1446]. Google Scholar

[115] Tian B, Zhang F, Tan X. Design and development of an LED-based optical communication system for autonomous underwater robots. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, 2013. 1558-1563. Google Scholar

[116] Doniec M, Detweiler C, Vasilescu I, et al. Using optical communication for remote underwater robot operation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, 2010. 4017-4022. Google Scholar

[117] Oubei H M, Li C, Park K-H, et al. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode. Opt Express, 2015, 23: 20743-20748. Google Scholar

[118] Sun M, Zheng B, Zhao L, et al. A design of the video transmission based on the underwater laser communication. In: Proceedings of OCEANS MTS/IEEE Conference and Exhibition, St. John's, 2014. 1-4. Google Scholar

[119] Green D, Rice J. Channel-tolerant FH-MFSK acoustic signaling for undersea communications and networks. IEEE J Ocean Eng, 2000, 25: 28-39 CrossRef Google Scholar

[120] Melodia T, Kulhandjian H, Kuo L C, et al. Advances in underwater acoustic networking. In: Mobile Ad Hoc Networking: Cutting Edge Directions. 2nd ed. Hoboken: John Wiley & Sons, 2013. 804-854. Google Scholar

[121] Kilfoyle D B, Baggeroer A B. The state of the art in underwater acoustic telemetry. IEEE J Ocean Eng, 2000, 25: 4-27 CrossRef Google Scholar

[122] Stojanovic M, Beaujean P P. Acoustic Communication. In: Dhanak M R, Xiros N I, eds. Springer Handbook of Ocean Engineering, Curtin T, ed. Part B: Autonomous Ocean Vehicles and Control. Berlin: Springer, 2016. Google Scholar

[123] Freitag L, Grund M, Singh S, et al. The WHOI micro-modem: an acoustic communications and navigation system for multiple platforms. In: Proceedings of OCEANS IEEE/MTS Conference and Exhibition, Washington, 2005. 1086-1092. Google Scholar

[124] Zhou S, Wang Z. OFDM for Underwater Acoustic Communications. Hoboken: John Wiley & Sons, Ltd, 2014. Google Scholar

[125] Yu H, Song A, Badiey M, et al. Iterative estimation of doubly selective underwater acoustic channel using basis expansion models. Ad Hoc Netw, 2015, 34: 52-61 CrossRef Google Scholar

[126] Lin N, Sun H, Cheng E, et al. Prediction based sparse channel estimation for underwater acoustic OFDM. Appl Acoust, 2015, 96: 94-100 CrossRef Google Scholar

[127] Xia M, Rouseff D, Ritcey J A, et al. Underwater acoustic communication in a highly refractive environment using SC-FDE. IEEE J Ocean Eng, 2014, 39: 491-499 CrossRef Google Scholar

[128] Zheng Y, Wu J, Xiao C. Turbo equalization for single-carrier underwater acoustic communications. IEEE Commun Mag, 2015, 53: 79-87. Google Scholar

[129] Roy S, Duman T M, McDonald V, et al. High rate communication for underwater acoustic channels using multiple transmitters and space-time coding: receiver structures and experimental results. IEEE J Ocean Eng, 2007, 32: 663-688 CrossRef Google Scholar

[130] Vajapeyam M, Vedantan S, Mitra U. Distributed space-time cooperative schemes for underwater acoustic communications. IEEE J Ocean Eng, 2008, 33: 489-501 CrossRef Google Scholar

[131] Edelman G, Hodgkiss W S, Kim S, et al. Underwater acoustic communication using time reversal. IEEE J Ocean Eng, 2005, 30: 852-864 CrossRef Google Scholar

[132] Rouseff D, Jackson D R, Fox L J, et al. Underwater acoustic communication by passive-phase conjugation: theory and experimental results. J Acoust Soc Am, 2000, 26: 821-831. Google Scholar

[133] Flynn J A, Ritcey J A, Rouseff D, et al. Multichannel equalization by decision-directed passive phase conjugation: Experimental results. IEEE J Ocean Eng, 2004, 29: 824-836 CrossRef Google Scholar

[134] Zeng W, Yu Z, Xu W. Experimental demonstration of time reversal communication in doubly dispersive underwater channels. In: Proceedings of the 8th ACM International Workshop on UnderWater Networks. New York: ACM, 2013. 1-5. Google Scholar

[135] Choi J W, Riedl T, Kim K, et al. Adaptive linear turbo equalization over doubly selective channels. IEEE J Ocean Eng, 2011, 36: 473-489 CrossRef Google Scholar

[136] Pelekanakis K, Chitre M. New sparse adaptive algorithms based on the natural gradient and the L0-norm. IEEE J Ocean Eng, 2013, 38: 323-332 CrossRef Google Scholar

[137] Roy S, Duman T, McDonald V. Error rate improvement in underwater MIMO communications using sparse partial response equalization. IEEE J Ocean Eng, 2009, 34: 181-201 CrossRef Google Scholar

[138] Wan L, Zhou H, Xu X, et al. Adaptive modulation and coding for underwater acoustic OFDM. IEEE J Ocean Eng, 2015, 40: 327-336 CrossRef Google Scholar

[139] Curtin T B, Bellingham J G, Progress toward autonomous ocean sampling networks. Deep Sea Res Part II Topical Studies Oceanogr, 2009, 56: 62-67. Google Scholar

[140] Rice J, Creber B, Fletcher C, et al. Evolution of Seaweb underwater acoustic networking. In: Proceedings of OCEANS 2000 MTS/IEEE Conference and Exhibition, Providence, 2000. 2007-2017. Google Scholar

[141] Grund M, Freitag L, Preisig J, et al. The PLUSNet underwater communications system: Acoustic telemetry for undersea surveillance. In: Proceedings of OCEANS 2006 MTS/IEEE Conference and Exhibition, Boston, 2006. 1-5. Google Scholar

[142] Acar G, Adams A E. ACMENet: an underwater acoustic sensor network protocol for real-time environmental monitoring in coastal areas. IET Radar Sonar Nav, 2006, 153: 365-380 CrossRef Google Scholar

[143] Chen K, Ma M, Cheng E, et al. A survey on MAC protocols for underwater wireless sensor networks. IEEE Commun Surv Tut, 2014, 16: 1433-1447 CrossRef Google Scholar

[144] Syed W, Ye H, Heidemann J. T-Lohi: a new class of MAC protocols for underwater acoustic sensor networks. In: Proceedings of the 27th Conference on Computer Communications, Phoenix, 2007. 231-235. Google Scholar

[145] Petrioli R P, Cahiara, Potter J. Performance evaluation of underwater MAC protocols: from simulation to at sea testing. In: Proceedings of OCEANS 2011 MTS/IEEE Conference and Exhibition, Santander, 2011. 1-10. Google Scholar

[146] Pu L, Luo Y, Mo H, et al. Comparing underwater MAC protocols in real sea experiment. Comput Commun, 2013, 56: 1-9. Google Scholar

[147] Khalil I, Gadallah Y, Khreishah M H. An adaptive OFDMA-based MAC protocol for underwater acoustic wireless sensor networks. Sensors, 2012, 12: 8782-8805 CrossRef Google Scholar

[148] Sozer E M, Stojanovic M, Proakis J G. Underwater acoustic networks. IEEE J Ocean Eng, 2000, 25: 72-83 CrossRef Google Scholar

[149] Proakis J G, Sozer E M, Rice J A, et al. Shallow water acoustic networks. IEEE Commun Mag, 2001, 39: 114-119. Google Scholar

[150] Heidemann J, Stojanovic M, Zorzi M. Underwater sensor networks: applications, advances and challenges. Philos Trans R Soc A, 2012, 370: 158-175 CrossRef Google Scholar

[151] Zhu Y, Peng Z, Cui J-H, et al. Toward practical MAC design for underwater acoustic networks. IEEE Trans Mobile Comput, 2015, 14: 872-886 CrossRef Google Scholar

[152] Ahn J, Syed A, Krishnamachari B, et al. Design and analysis of a propagation delay tolerant ALOHA protocol for underwater networks. Ad Hoc Netw, 2011, 9: 752-766 CrossRef Google Scholar

[153] Han G, Jiang J, Bao N, et al. Routing protocols for underwater wireless sensor networks. IEEE Commun Mag, 2015, 53: 72-78. Google Scholar

[154] Darehshoorzadeh A, Boukerche A. Underwater sensor networks: a new challenge for opportunistic routing protocols. IEEE Commun Mag, 2015, 53: 98-106. Google Scholar

[155] Jim P, Kurose J, Levine B N. A survey of practical issues in underwater networks. ACM SIGMOBILE Mobile Comput Commun Rev, 2007, 11: 23-33 CrossRef Google Scholar

[156] He Y, Wang G H, Guan X, et al. Information Fusion Theory With Applications. Beijing: Electronics Industry Press, 2010 [何友, 王国宏, 关欣, 等. 信息融合理论及应用. 北京: 电子工业出版社, 2010]. Google Scholar

[157] StoneL D, Corwin T L, Barlow C A. Bayesian Multiple Target Tracking. Norwood: Artech House Inc, 1999. Google Scholar

[158] HallD L, Llinas J. An introduction to multisensor data fusion. Proc IEEE, 1997, 85: 6-23 CrossRef Google Scholar

[159] KhaleghiB , Khamis A, Karray F O. Multisensor data fusion: a review of the state-of-the-art. Inform Fusion, 2013, 14: 28-44 CrossRef Google Scholar

[160] Han C. Multi-Source Information Fusion. Beijing: Tsinghua University Press, 2010 [韩崇昭. 多源信息融合. 北京: 清华大学出版社, 2010]. Google Scholar

[161] Yang W. Multi-sensor Data Fusion and Its Applications. Xian: Xidian University Press, 2004 [杨万海. 多传感器数据融合及其应用. 西安: 西安电子科技大学出版社, 2004]. Google Scholar

[162] Zhao Z G, Xiong Z H, Wang K, et al. Conceptions, Methods and Applications on Information Fusion. Beijing: National Defense Industry Press, 2012 [赵宗贵, 熊朝华, 王珂, 等. 信息融合概念方法与应用. 北京: 国防工业出版社, 2012]. Google Scholar

[163] Pan Q, Cheng Y M, Liang Y, et al. Multi-source Information Fusion Theory and its Applications. Beijing: Tsinghua University Press, 2013 [潘泉, 程咏梅, 梁彦, 等. 多源信息融合理论及应用. 北京: 清华大学出版社, 2013]. Google Scholar

[164] Chen D, Liu Z, Wang L, et al. Natural disaster monitoring with wireless sensor networks: a case study of data-intensive applications upon low-cost scalable systems. Mobile Netw Appl, 2013, 18: 651-663 CrossRef Google Scholar

[165] Corke P, Wark T, Jurdak R, et al. Environmental wireless sensor networks. Proc IEEE, 2010, 98: 1903-1917 CrossRef Google Scholar

[166] Ji Y, Zhang J, Meng J, et al. Point association analysis of vessel target detection with SAR, HFSWR and AIS. Acta Oceanol Sin, 2014, 33: 73-81. Google Scholar

[167] Liu G W, Liu Y X, Ji Y G, et al. Track association for high-frequency surface wave radar and AIS based on fuzzy double threshold theory. Syst Eng Electron, 2015, 38: 557-562 [刘根旺, 刘永信, 纪永刚, 等. 基于模糊双门限的高频地波雷达与 SAR 目标航迹关联方法. 系统工程与电子技术, 2015, 38: 557-562]. Google Scholar

[168] Xia D W, Shi S X, Yu G, et al. Study on the techniques of marine data warehouse and data mining. Marine Sci Bulletin, 2005, 24: 60-65 [夏登文, 石绥祥, 于戈, 等. 海洋数据仓库及数据挖掘技术方法研究. 海洋通报, 2005, 24: 60-65]. Google Scholar

[169] Sun C, Liu Q, Hu T, et al. Software architecture for oceanographic big data processing. Periodical of Ocean University of China, 2015, 45: 134-137 [孙朝随, 刘青, 胡桐, 等. 海洋大数据处理软件体系结构设计. 中国海洋大学学报, 2015, 45: 134-137]. Google Scholar

[170] Zhang J, Cao C, Guo J, et al. Technical demands and development priorities in China's 13th five-year plan period for marine environment observing and forecasting: Case study from the North China Sea. J Ocean Tech, 2014, 33: 1-5 [张杰, 曹丛华, 郭敬天, 等. 海洋环境观测预报技术需求与 ``十三五'' 发展重点. 海洋技术学报, 2014, 33: 1-5]. Google Scholar

[171] Nowlin W D, Malone T C. Research and GOOS. Mar Technol Soc J, 2003, 37: 42-46 CrossRef Google Scholar

[172] Mecca V F, Krolik J L. Slow-time MIMO STAP with improved power efficiency. In: Proceedings of the 41st Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2007. 202-206. Google Scholar

[173] Wu J, Wang T, Zhang L, et al. Range-dependent clutter suppression for airborne sidelooking radar using MIMO technique. IEEE Trans Aerosp Electron Syst, 2012, 48: 3647-3654 CrossRef Google Scholar

[174] Velotto D, Soccorsi M, Lehner S. Azimuth ambiguities removal for ship detection using full polarimetric X-band SAR data. IEEE Trans Geosci Remote Sens, 2014, 52: 76-88 CrossRef Google Scholar

[175] Burkholder R J, Pino M R, Obelleiro F. A Monte Carlo study of the rough-sea-surface influence on the radar scattering from two-dimensional ships. IEEE Antennas Propag Mag, 2001, 43: 25-33 CrossRef Google Scholar

[176] Diao G, Xu X, Ni H, et al. Synthetic aperture radar signal simulation of ships on sea surface. J Syst Simul, 2015, 27: 1989-2007 [刁桂杰, 许小剑, 倪虹, 等. 海面舰船目标 SAR 回波信号仿真. 系统仿真学报, 2015, 27: 1989-2007]. Google Scholar

[177] Yuan M. Development of remote sensing satellite and its business model. Satellite Appl, 2015, 15-19 [原民辉. 遥感卫星及其商业模式的发展. 卫星应用, 2015, 15-19]. Google Scholar

[178] Durack P J, Wijffels S E, Matear R J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 2012, 336: 455-458 CrossRef Google Scholar

[179] Brown C J, Smith S J, Lawton P, et al. Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar Coast Shelf Sci, 2011, 92: 502-520 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有