logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 10 : 1359-1371(2016) https://doi.org/10.1360/N112016-00067

A source transfer domain decomposition method for time-harmonic elastic wave equations

More info
  • ReceivedApr 5, 2016
  • AcceptedJul 7, 2016
  • PublishedOct 25, 2016

Abstract

We extend the source transfer domain decomposition method (STDDM) proposed by Chen et al., in order to solve the time-harmonic elastic wave equation that is discretized using the spectral element method. Some numerical examples are presented, demonstrating that STDDM can be applied as an efficient preconditioner in the preconditioned GMRES method for solving the PML equation of the time-harmonic elastic wave equation, with constant and heterogeneous wave numbers. Regarding the problem with constant wave number, the preconditioned GMRES method converges within just a small number of iterations when the discretization error is reduced by high order spectral elements.


Funded by

国家重点基础研究发展计划(973)

(2011CB309701)

国家高技术研究发展计划(863)

(2012AA01A30901)

国家自然科学基金(11501559)

国家自然科学基金(91430215)

国家自然科学基金(91530323)

国家自然科学基金(11321061)

中国科学院国家数学与交叉科学研究中心(NCMIS)


References

[1] {Chen Z, Xiang X}. {A source transfer domain decomposition method for Helmholtz equations in unbounded domain}. SIAM J Numer Anal, 2013, 51: 2331-2356 CrossRef Google Scholar

[2] {Chen Z, Xiang X, Zhang X}. {Convergence of the PML method for elastic wave scattering problems}. Math Comp, 2016, 85: 2687-2714 CrossRef Google Scholar

[3] {Benamou J D, Després B}. {A domain decomposition method for the Helmholtz equation and related optimal control problems}. J Comput Phys, 1997, 136: 68-82 CrossRef Google Scholar

[4] {Gander M J, Magoules F, Nataf F}. {Optimized Schwarz methods without overlap for the Helmholtz equation}. SIAM J Sci Comput, 2002, 24: 38-60 CrossRef Google Scholar

[5] {Brandt A, Livshits I}. {Wave-ray multigrid method for standing wave equations}. Electron Trans Numer Anal, 1997, 6: 162-181. Google Scholar

[6] {Elman H C, Ernst O G, O'leary D P}. {A multigrid nethod enhanced by Krylov subspace iteration for discrete Helmholtz equations}. SIAM J Sci Comput, 2001, 23: 1291-1315 CrossRef Google Scholar

[7] {Liu F, Ying L}. {Recursive sweeping preconditioner for 3D Helmholtz equation}. arXiv:1502.07266, 2015. Google Scholar

[8] {Liu F, Ying L}. {Additive sweeping preconditioner for the Helmholtz equation}. arXiv:1504.04058, 2015. Google Scholar

[9] {Luo S, Qian J, Burridge R}. {Fast Huygens sweeping method for Helmholtz equations in inhomogeneous media in the high frequency regime}. J Comput Phys, 2014, 270: 378-401 CrossRef Google Scholar

[10] {Poulson J, Engquist B, Li S, et al}. {A parallel sweeping preconditioner for heterogenous 3D Helmholtz euqations}. SIAM J Sci Comput, 2013, 35: 194-212 CrossRef Google Scholar

[11] {Stolk C}. {A rapidly converging domain decomposition method for the Helmholtz equation}. J Comput Phys, 2013, 241: 240-252 CrossRef Google Scholar

[12] {Zepeda-Nú\ {n}ez L, Demanet L}. {The method of polarized traces for the 2D Helmholtz equation}. J Comput Phys, 2016, 308: 347-388 CrossRef Google Scholar

[13] {Engquist B, Ying L}. {Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers}. Multiscle Model Simul, 2011, 9: 686-710 CrossRef Google Scholar

[14] {Chen Z, Xiang X}. {A source transfer domain decomposition method for Helmholtz equations in unbounded domain, part II: extensions}. Numer Math: Theory, Meth Appl, 2013, 6: 538-555. Google Scholar

[15] {Du Y, Wu H J}. {An improved source transfer domain decomposition for Helmholtz equations in unbounded domain.} arXiv:1505.06052, 2015. Google Scholar

[16] {Chew W C, Weedon W}. {A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates}. Microw Opt Tech Lett, 1994, 7: 599-604 CrossRef Google Scholar

[17] van de Vosse F N, Minev P D. Spectral Elements Methods: Theory and Applications. EUT Report 96-W-001 ISBN 90-236-0318-5. Eindhoven University of Technology, 1996. Google Scholar

[18] {Amestoy P R, Duff I S, L'Excellent J Y, et al}. {A fully asynchronous multifrontal solver using distributed dynamic scheduling}. SIAM J Matrix Anal Appl, 2001, 23: 15-41 CrossRef Google Scholar

[19] {Amestoy P R, Guermouche A, L'Excellent J Y, et al}. {Hybrid scheduling for the parallel solution of linear systems}. Parall Comput, 2006, 32: 136-156 CrossRef Google Scholar

[20] {Bourgeois A, Bourget M, Lailly P, et al}. {Marmousi, model and data}. Marmousi Exper, 1991, 5-16. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号