logo

SCIENTIA SINICA Informationis, Volume 46, Issue 10: 1489-1509(2016) https://doi.org/10.1360/N112016-00068

Review of convergence acceleration methods in Monte Carlo criticality calculations for reactor analysis

More info
  • ReceivedMar 29, 2016
  • AcceptedAug 25, 2016
  • PublishedOct 25, 2016

Abstract

The core problem of criticality calculations in nuclear analysis is to calculate the fission source distributions of systems. As the computing performance of hardware and software has advanced, Monte Carlo methods have been applied to the nuclear analysis of whole core problems, because the accuracy of the Monte Carlo calculations has been enhanced by its ability to use continuous energy nuclear data and to handle complex geometry information. When approaching whole core analyses, the Monte Carlo criticality calculations must handle some challenging problems, such as slow convergence, the stopping criteria of source convergence, and real variance estimations. Here, the theory and challenges of Monte Carlo criticality are introduced, and progress in convergence acceleration methods and variance reduction techniques is reviewed.


Funded by

国家重点基础研究发展计划(973计划)

(2011CB309705)


References

[1] X-5 Monte Carlo Team. MCNP--a General N-Particle Transport Code, Version 5-Volume 1: Overview and Theory. LA-UR-03-1987, Los Alamos National Laboratory, 2003. Google Scholar

[2] Griesheimer D P, Gill D F, Nease B R, et al. MC21 V.6.0 -- a continuous-energy Monte Carlo particle transport code with integrated reactor feedback capabilities. Ann Nucl Energy, 2015, 82: 29-40. Google Scholar

[3] Romano P K, Horelik N E, Herman B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development. Ann Nucl Energy, 2015, 82: 90-97 CrossRef Google Scholar

[4] Leppanen J, Pusa M, Viitanen T, et al. The serpent Monte Carlo code: status, developments. Ann Nucl Energy, 2015, 82: 142-145. Google Scholar

[5] Wang K, Li Z, She D, et al. RMC -- a Monte Carlo code for reactor core analysis. Ann Nucl Energy, 2015, 82: 121-129 CrossRef Google Scholar

[6] Deng L, Li G, Zhang B Y, et al. Simulation of full-core pin-by-pin model by JMCT Monte Carlo neutron-photon transport code. Atom Energy Sci Tech, 2014, 6: 1061-1066 [邓力, 李刚, 张宝印, 等. JMCT 蒙特卡罗中子-光子输运全堆芯Pin-by-Pin 模型的模拟. 原子能科学技术, 2014, 6: 1061-1066]. Google Scholar

[7] Wu Y, Song J, Zheng H, et al. CAD-based Monte Carlo program for integrated simulation of nuclear system superMC. Ann Nucl Energy, 2015, 82: 161-168 CrossRef Google Scholar

[8] Brown F B. Recent advances and future prospects for Monte Carlo. In: Proceedings of Supercomputing in nuclear applications & Monte Carlo, Tokyo, 2010. 17-21. Google Scholar

[9] Martin W R. Challenges and prospects for whole-core Monte Carlo analysis. Nucl Eng Tech, 2012, 44: 151-160 CrossRef Google Scholar

[10] Yamamoto T, Miyoshi Y. Reliable method for fission source convergence of Monte Carlo criticality calculation with Wielandt's method. J Nucl Sci Tech, 2004, 41: 99-107 CrossRef Google Scholar

[11] Kiedrowski B C, Brown F. Using Wielandt's method to estimate confidence interval under prediction bias in MCNP5 criticality calculations. Trans Am Nucl Soc, 2008, 99: 338-340. Google Scholar

[12] She D, Wang K, Yu G. Asymptotic Wielandt method and superhistory method for convergence in Monte Carlo criticality calculation. Nucl Sci Eng, 2012, 172: 127-137 CrossRef Google Scholar

[13] Carter L L, McCormick N J. Source convergence in Monte Carlo calculations. Nucl Sci Eng, 1969, 36: 438-441 CrossRef Google Scholar

[14] Kadotani H, Hariyama Y, Shiota M, et al. Acceleration of fission distribution convergence using eigenvectors from matrix K calculations in the KENO code. In: Proceedings of International Conference on Nuclear Criticality Safety, Oxford, 1991. Google Scholar

[15] Kitada T, Takeda T. Effective convergence of fission source distribution in Monte Carlo simulation. J Nucl Sci Tech, 2001, 38: 324-329 CrossRef Google Scholar

[16] Urbatsch T J. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations. Dissertation for Ph.D. Degree. Los Alamos: Los Alamos National Laboratory, 1995. Google Scholar

[17] Pan L, Wang R, Jiang S. Monte Carlo Fission matrix acceleration method with limited inner iteration. Nucl Sci Eng, 2015, 180: 199-208. Google Scholar

[18] Dufek J, Gudowski W. Fission matrix based Monte Carlo criticality calculations. Ann Nucl Energy, 2009, 36: 1270-1275 CrossRef Google Scholar

[19] Carney S E, Brown F B, Kiedrowski B C, et al. Fission Matrix Capability for MCNP Monte Carlo. LA-UR-12-24533, Los Alamos National Laboratory, 2012. Google Scholar

[20] Dufek J, Gudowski W. An efficient parallel computing scheme for Monte Carlo criticality calculations. Ann Nucl Energy, 2009, 36: 1276-1279 CrossRef Google Scholar

[21] Wenner M, Haghighat A. A fission matrix based methodology for achieving an unbiased solution for eigenvalue Monte Carlo simulations. Prog Nucl Sci Tech, 2011, 2: 886-892 CrossRef Google Scholar

[22] Smith K S. Nodal method storage reduction by nonlinear iteration. Trans Am Nucl Soc, 1983, 44: 265-266. Google Scholar

[23] Cho Y J, Joo H G, Lee C C, et al. Cell based CMFD formulation for acceleration of whole-core method of characteristics calculation. J Korean Nucl Soc, 2002, 34: 250-258. Google Scholar

[24] Zhong Z P, Downar T J, Xu Y L, et al. Implementation of two-level coarse-mesh finite difference acceleration in an arbitrary geometry, two-dimensional discrete ordinates transport method. Nucl Sci Eng, 2008, 158: 289-301 CrossRef Google Scholar

[25] Cho N Z, Lee G S, Park C J. Partial Current-based CMFD acceleration of the 2D/1D fusion method for 3D whole-core transport calculations. Tran Am Nucl Soc, 2003, 594: 88-89. Google Scholar

[26] Cho N Z, Yun S, Lee K T, et al. Speedup of Monte Carlo k-eigenvalue calculations via p-CMFD rebalance. Trans Am Nucl Soc, 2004, 90: 550. Google Scholar

[27] Lee M J, Joo H G, Lee D, et al. Investigation of CMFD acceleration Monte Carlo eigenvalue calculation with simplified low dimensional multigroup formulation. In: Proceedings of the International Conference on the Physics of Reactors, Pittsburgh, 2010. 9-14. Google Scholar

[28] Yun S, Cho N Z. Acceleration of source convergence in Monte Carlo k-eigenvalue problem via anchoring with a p-CMFD deterministic method. Ann Nucl Energy, 2010, 37: 1649-1658 CrossRef Google Scholar

[29] Wolters E R, Larsen E W, Martin W R. Hybrid Monte Carlo-CMFD methods for accelerating fission source convergence. Nucl Sci Eng, 2013, 174: 286-299 CrossRef Google Scholar

[30] Lee M J, Joo H G, Lee D, et al. Coarse mesh finite difference formulation for accelerated Monte Carlo eigenvalue calculation. Ann Nucl Energy, 2014, 65: 101-113 CrossRef Google Scholar

[31] Larsen E W, Yang J. A functional Monte Carlo methods for k-eigenvalue problems. Nucl Sci Eng, 2008, 159: 107-126 CrossRef Google Scholar

[32] Zhang D, Rahnema F. An efficient hybrid stochastic/deterministic coarse mesh neutron transport method. Ann Nucl Energy, 2012, 41: 1-11 CrossRef Google Scholar

[33] Gelbard E M, Roussel B. Proposed solution to the ``keff of the world" problem. Trans Amer Nucl Soc, 1995, 73: 201. Google Scholar

[34] Yun S, Cho N Z. Monte Carlo anchoring method for loosely-coupled k-eigenvalue problems. In: Proceedings of International Conference on Advances in Mathematics, Computational Methods, and Reactor Physics. New York: Springs, 2009. 3-7. Google Scholar

[35] Yang J, Natio Y. The sandwich method for detering source convergence in Monte Carlo calculation. In: Proceeding of the 7th International Conference on Nuclear Criticality Safety, Ibaraki, 2003. 19. Google Scholar

[36] Ibrahim A M, Peplow D E, Wagner J C, et al. Acceration of Monte Carlo criticality calculations using deterministic-based starting sources. In: Proceedings of the International Conference on the Physics of Reactors, Knoxville, 2012. Google Scholar

[37] Booth T E. A weight window/importance generator for Monte Carlo streaming problems. In: Proceedings of the 6th International Conference on Radiation Shielding, Tokyo, 1983. Google Scholar

[38] Lewis E E, Miller W F. Computational Methods of Neutron Transport. New York: John Wiley & Sons, 1984. Google Scholar

[39] Kong R, Spanier J. Geometric convergence of adaptive Monte Carlo algorithms for radiative transport problems based on importance sampling methods. Nucl Sci Eng, 2011, 168: 197-225 CrossRef Google Scholar

[40] Vanwijk A J, Vandeneynde G, Hoogenboom J E. An easy to implement global variance reduction procedure for MCNP. Ann Nucl Energy, 2011, 38: 2496-2503 CrossRef Google Scholar

[41] Wagner J C, Peplow D E, Mosher S W, et al. Review of hybrid (determinitistic/Monte Carlo) rdiation transport methods, codes, and applications at Oak Ridge National Laboratory. In: Proceedings of Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010), Tokyo, 2010. Google Scholar

[42] Cooper M A. Automated weight windows for global Monte Carlo particle transport calculations. Nucl Sci Eng, 2001, 137, 1-13. Google Scholar

[43] Becker T L, Wollaber A B, Larsen E W. A hybrid Monte Carlo-deterministic method for global particle transport calculations. Nucl Sci Eng, 2007, 155: 155-167. Google Scholar

[44] Wagner J C, Blakeman E D, Peplow D E. Forward-weighted CADIS method for global variance reduction. Trans Amer Nucl Soc, 2007, 97: 630-633. Google Scholar

[45] Christoforou S, Hoogenboom J E. A zero-variance-based scheme for Monte Carlo criticality calculations. Nucl Sci Eng, 2011, 167: 91-104 CrossRef Google Scholar

[46] Densmore J D, Larsen E W. Variational variance reduction for Monte Carlo eigenvalue and eigenfunction problems. Nucl Sci Eng, 2004, 146: 121-140. Google Scholar

[47] Densmore J D, Larsen E W. Variational variance reduction for particle transport eigenvalue calculations using Monte Carlo adjoint simulation. J Comput Phys, 2003, 192: 387-405 CrossRef Google Scholar

[48] Griesheimer D P, Martin W R, Holloway J P. Convergence properties of Monte Carlo functional expansion tallies. J Comput Phys, 2006, 211: 129-153 CrossRef Google Scholar

[49] Kaushik B, Martin W R. Kernel density estimation method for Monte Carlo global flux tallies. Nucl Sci Eng, 2012, 170: 234-250 CrossRef Google Scholar

[50] Griesheimer D P, Martin W R, Holloway J P. A functional expansion method for Monte Carlo eigenvalue calculations. In: Proceeding of American Nuclear Society Conference, Chattanooga, 2005. Google Scholar

[51] Martin W R, Holloway J P, Banerjee K, et al. Global Monte Carlo Simulation with Higher Order Polynomial Expansions. DE-FG07-04ID14607, University of Michigan, 2007. Google Scholar

[52] Ueki T, Brown F B. Stationarity modeling and informatics-based diagnostics in Monte Carlo criticality calculations. Nucl Sci Eng, 2005, 149: 38-50 CrossRef Google Scholar

[53] Naito Y, Yang J A. The sandwich method for determing source convergence in Monte Carlo calculation. J Nucl Sci Tech, 2004, 41: 559-568 CrossRef Google Scholar

[54] Shim H J, Kim C H. Stopping criteria of inactive cycle Monte Carlo calculations. Nucl Sci Eng, 2007, 157: 132-141 CrossRef Google Scholar

[55] Shim H J, Kim C H. A new approach to check and diagnose the fission source convergence in Monte Carlo criticality calculations. Nucl Sci Eng, 2014, 178: 28-41. Google Scholar

[56] Mervin B T, Mosher S W, Wagner J C, et al. Uncertainty underprediction in Monte Carlo eigenvalue calculations. Nucl Sci Eng, 2013, 173: 276-292 CrossRef Google Scholar

[57] Gelbard E M, Prael R E. Computation of standard deviations in eigenvalue calculations. Prog Nucl Energy, 1990, 24: 237-241 CrossRef Google Scholar

[58] Shim H J, Choi S H, Kim C H. Real variance estimation by grouping histories in Monte Carlo eigenvalue calculations. Nucl Sci Eng, 2014, 176: 58-68. Google Scholar

[59] Ueki T, Mori T, Nakagawa M. Error estimations and their biases in Monte Carlo eigenvalue calculations. Nucl Sci Eng, 1997, 125: 1-11 CrossRef Google Scholar

[60] Shim H J, Kim C H. Real variance estimation using an intercycle fission source correlation for Monte Carlo eigenvalue calculations. Nucl Sci Eng, 2009, 162: 98-108 CrossRef Google Scholar

[61] Romano P K, Forget B. Parallel fission bank algorithms in Monte Carlo criticality calculations. Nucl Sci Eng, 2012, 170: 125-135 CrossRef Google Scholar

[62] Brunner T A, Urbatsch T J, Evans T M, et al. Comparison of Four Parallel Algorithms for Domain Decomposed Implicit Monte Carlo. UCRL-JRNL-208745, LawRence Livermore National Laboratory, 2004. Google Scholar

[63] Siegel A. Analysis of communication costs for domian decomposed Monte Carlo methods in nuclear reactor analysis. J Comput Phys, 2012, 231: 3119-3125 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号