logo

SCIENTIA SINICA Informationis, Volume 46, Issue 8: 1086-1107(2016) https://doi.org/10.1360/N112016-00069

Millimeter wave and terahertz technology

More info
  • ReceivedMar 28, 2016
  • AcceptedJun 23, 2016

Abstract

This paper reviews the state-of-the-art in millimeter wave and terahertz technologies, and summarizes several important future directions, mainly based on worldwide development trends. In millimeter-wave (MMW) technology, this paper mainly focuses on the introduction of the MMW chip in recent years, with details given of typical application areas of MMW systems, such as MMW communication, MMW imaging, and MMW radar. Compared to the MMW frequency bands, exploration of the terahertz (THz) spectrum is still at an early stage. Thus, emphasis is placed on several key THz technologies, including THz source, THz transmission, THz detection, THz devices. Several promising THz application areas such as astronomy, nondestructive testing, life sciences, safety, and high-speed communication are also discussed.


Funded by

国家自然科学基金(61331006)

国家自然科学基金(61471118)

国家高技术研究发展计划(863计划)

(2015AA01A703)


References

[1] Liu S G. Recent development of terahertz science and technology. China Basic Sci, 2006, 8: 7-12 [刘盛纲. 太赫兹科学技术的新发展. 中国基础科学, 2006, 8: 7-12]. Google Scholar

[2] Yao J Q, Lu Y, Zhang B G, et al. New research progress of THz radiation. J Optoelectron Laser, 2005, 16: 503-510 [姚建铨, 路洋, 张百钢, 等. THz 辐射的研究和应用新进展. 光电子$\cdot$激光, 2005, 16: 503-510]. Google Scholar

[3] Siegel P H. Terahertz technology. IEEE Trans Microw Theory Tech, 2002, 50: 910-928 CrossRef Google Scholar

[4] Samoska L A. An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime. IEEE Trans Terahertz Sci Tech, 2011, 1: 9-24 CrossRef Google Scholar

[5] Leong K M K H, Mei X, Yoshida W, et al. A 0.85 THz low noise amplifier using InP HEMT transistors. IEEE Microw Wirel Compon Lett, 2015, 25: 397-399. Google Scholar

[6] Radisic V, Scott D W, Monier C, et al. InP HBT transferred substrate amplifiers operating to 600 GHz. In: Proceedings of IEEE MTT-S International Microwave Symposium, Phoenix, 2015. 1-3. Google Scholar

[7] Tessmann A, Leuther A, Massler H, et al. A high gain 600 GHz amplifier TMIC using 35 nm Metamorphic HEMT technology. In: Proceedings of IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, 2012. 1-4. Google Scholar

[8] Leuther A, Tessmann A, Doria P, et al. 20 nm Metamorphic HEMT technology for terahertz monolithic integrated circuits. In: Proceedings of the 9th European Microwave Integrated Circuit Conference (EuMIC), Rome, 2014. 84-87. Google Scholar

[9] Kolias N J. Recent advances in GaN MMIC technology. In: Proceedings of Custom Integrated Circuits Conference (CICC), San Jose, 2015. 1-5. Google Scholar

[10] Margomenos A, Kurdoghlian A, Micovic M, et al. GaN Technology for E, W and G-band applications. In: Proceedings of Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, 2014. 1-4. Google Scholar

[11] Yu X, Sun H, Xu Y, et al. C-band 60W GaN power amplifier MMIC designed with harmonic tuned approach. Electron Lett, 2016, 52: 219-221 CrossRef Google Scholar

[12] Yu X, Hong W, Wang W, et al. A millimeter wave 11W GaN MMIC power amplifier. In: Proceedings of the 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), Harbin, 2014. 1342-1344. Google Scholar

[13] Rucker H, Heinemann B, Fox A. Half-Terahertz SiGe BiCMOS technology. In: Proceedings of IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Santa Clara, 2012. 133-136. Google Scholar

[14] Seok E, Cao C, Shim D, et a1. A 410 GHz CMOS push-push oscillator with an on-chip patch antenna. In: Proceedings of IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco 2008. 472-473. Google Scholar

[15] Laskin E, Chevalier P, Chantre A, et a1. 165-GHz transceiver in SiGe technology. IEEE J Solid State Circ, 2008, 43: 1087-1100 CrossRef Google Scholar

[16] Nicolson S T, Tomkins A, Tang K W, et a1. A 1.2V 140GHz receiver with on-die antenna in 65nm CMOS. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, 2008. 229-232. Google Scholar

[17] Seo M, Jagannathan B, Carta C, et al. A 1.1V 150GHz amplifier with 8dB gain and +6dBm saturated output power in standard digital 65rim CMOS using dummy-prefilled microstrip lines. In: Proceedings of IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, 2009. 484-485. Google Scholar

[18] Han R, Afshari E. A broadband 480-GHz passive frequency doubler in 65-nm bulk CMOS with 0.23mW output power. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium(RFIC), Montreal, 2012. 203-206. Google Scholar

[19] Marcu C, Chowdhury D, Thakkar C, et al. A 90nm CMOS low-power 60GHz transceiver with integrated baseband circuitry. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 2009. 314-315. Google Scholar

[20] Lin F J, Brinkhoff J, Kang K, et al. A low power 60GHz OOK transceiver system in 90nm CMOSwith innovative on-chip AMC antenna. In: Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC), Taipei, 2009. 349-352. Google Scholar

[21] Zhao Y, Chen Z Z, Virbila G, et al. 2.1 An integrated 0.56THz frequency synthesizer with 21GHz locking range and -74dBc/Hz phase noise at 1MHz offset in 65nm CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 2016. 36-37. Google Scholar

[22] Ojefors E, Grzyb J, Zhao Y, et al. A 820GHz SiGe chipset for terahertz active imaging applications. In: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2011. 224-226. Google Scholar

[23] Park J, Kang S, Niknejad A M. A 0.38 THz fully integrated transceiver utilizing a quadrature push-push harmonic circuitry in SiGe BiCMOS. IEEE J Solid-State Circ, 2012, 47: 2344-2354. Google Scholar

[24] Hong W, Chen J X, Yan P P, et al. Research advances in CMOS millimeter and submillimeter wave integrated circuits. J Microw, 2010, 26: 1-6 [洪伟, 陈继新, 严蘋蘋, 等. CMOS毫米波亚毫米波集成电路研究进展. 微波学报, 2010, 26: 1-6]. Google Scholar

[25] Chen J, Hong W, Tang H, et al. Silicon based millimeter wave and THz ICs. IEICE Trans Electron, 2012, 95: 1134-1140. Google Scholar

[26] 国家重点基础研究发展计划(973计划)项目. 硅基毫米波亚毫米波集成电路与系统的基础研究(2010CB327400)结题总结报告. 2014. Google Scholar

[27] Feng J J, Cai J, Wu X P, et al. W-band 100W pulsed TWT amplifier for power combining experiment. In: Proceedings of IEEE International Vacuum Electronics Conference, Monterey, 2014. 173-174. Google Scholar

[28] Pi Z, Khan F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag, 2011, 49: 101-107. Google Scholar

[29] Hossain E, Hasan M. 5G cellular: key enabling technologies and research challenges. IEEE Instrum Meas Mag, 2015, 18: 11-21. Google Scholar

[30] Marcu C, Chowdhury D, Thakkar C, et al. A 90nm CMOS low-power 60GHz transceiver with integrated baseband circuitry. IEEE J Solid-State Circ, 2009, 44: 3434-3447 CrossRef Google Scholar

[31] Saponara S, Neri B. Fully integrated 60 GHz transceiver for wireless HD/WiGig short-range multi-Gbit connections. In: Applications in Electronics Pervading Industry, Environment and Society. Berlin: Springer International Publishing, 2016. Google Scholar

[32] Siligaris A, Richard O, Martineau B, et al. A 65-nm CMOS fully integrated transceiver module for 60-GHz wireless HD applications. IEEE J Solid-State Circ, 2011, 46: 3005-3017 CrossRef Google Scholar

[33] Tomkins A, Poon A, Juntunen E, et al. A 60 GHz, 802.11ad/WiGig-Compliant transceiver for infrastructure and mobile applications in 130 nm SiGe BiCMOS. IEEE J Solid-State Circ, 2015, 50: 1-17. Google Scholar

[34] Taghivand M, Aggarwal K, Rajavi Y, et al. An energy harvesting 2X2 60 GHz transceiver with scalable data rate of 38-2450 Mb/s for near-range communication. IEEE J Solid-State Circ, 2015, 50: 1889-1902 CrossRef Google Scholar

[35] Okada K, Li N, Matsushita K, et al. A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-Conversion transceiver for IEEE802. 15.3c. IEEE J Solid-State Circ, 2011, 46: 2988-3004 CrossRef Google Scholar

[36] Hong W, Wang H, Chen J, et al. Recent advances in Q-LINKPAN/IEEE 802.11aj (45GHz) millimeter wave communication technologies. In: Proceedings of IEEE Asia-Pacific Microwave Conference (APMC), Seoul, 2013. 227-229. Google Scholar

[37] Wang H, Hong W, Chen J, et al. IEEE 802.11aj (45GHz): a new very high throughput millimeter-wave WLAN system. China Commun, 2014, 11: 51-62. Google Scholar

[38] Zhu F, Hong W, Liang W F, et al. A low-power low-cost 45-GHz OOK transceiver system in 90-nm CMOS for multi-Gb/s transmission. IEEE Trans Microw Theory Tech, 2014, 62: 2105-2117 CrossRef Google Scholar

[39] Tanaka R. 30/20-GHz domestic satellite communication system in the public communication network of Japan: design and operation. Proc IEEE, 1984, 72: 1637-1644 CrossRef Google Scholar

[40] Cianca E, Rossi T, Yahalom A, et al. EHF for satellite communications: the new broadband frontier. Proc IEEE, 2011, 99: 1858-1881 CrossRef Google Scholar

[41] Rossi T, Cianca E, Lucente M, et al. Experimental Italian Q/V band satellite network. In: Proceedings of Aerospace Conference, Big Sky, 2009. 1-9. Google Scholar

[42] Cianca E, Stallo C, Lucente M, et al. TRANSPONDERS: effectiveness of propagation impairments mitigation techniques at Q/V band. In: Proceedings of IEEE GLOBECOM Workshops, New Orleans, 2008. 1-6. Google Scholar

[43] Ruggieri M, de Fina S, Pratesi M, et al. The W-Band data collection experiment of the DAVID mission. IEEE Trans Aerosp Electron Syst, 2002, 38: 1377-1387 CrossRef Google Scholar

[44] Lucente M, Rossi T, Jebril A, et al. Experimental missions in W-band: a small LEO satellite approach. IEEE Syst J, 2008, 2: 90-103 CrossRef Google Scholar

[45] Cooper A J. Fiber/radio for the provision of cordless/mobile telephony services in the access network. Electron Lett, 1990, 26: 2054-2056 CrossRef Google Scholar

[46] Beas J, Castanon G, Aldaya I, et al. Millimeter-wave frequency radio over fiber systems: a survey. IEEE Commun Surv Tutor, 2013, 15: 1593-1619 CrossRef Google Scholar

[47] Stohr A, Babiel S, Cannard P J, et al. Millimeter-wave photonic components for broadband wireless systems. IEEE Trans Microw Theory Tech, 2010, 58: 3071-3082 CrossRef Google Scholar

[48] Sambaraju R, Herrera J, Marti J, et al. Up to 40 Gb/s wireless signal generation and demodulation in 75-110 GHz band using photonic techniques. In: Proceedings of IEEE Topical Meeting on Microwave Photonics, Montreal, 2010. 1-4. Google Scholar

[49] Hirata A, Takahashi H, Yamaguchi R, et al. Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies. J Lightw Tech, 2008, 26: 2338-2344 CrossRef Google Scholar

[50] Kallfass I, Zwick T. High-speed wireless bridge at 220 GHz connecting two fiber-optic links each spanning up to 20 km. In: Proceedings of IEEE Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, 2012. 1-3. Google Scholar

[51] Song H J, Ajito K, Hirata A, et al. 8 Gbit/s wireless data transmission at 250 GHz. Electron Lett, 2009, 45: 1121-1122 CrossRef Google Scholar

[52] Mirth L, Pergande A, Eden D, et al. Passive millimeter-wave camera images: current and future. In: Proceedings of SPIE Conference on Passive Millimeter-Wave Imaging Technology, Orlando, 1999. 68-75. Google Scholar

[53] Kemp M C. Millimetre wave and terahertz technology for detection of concealed threats - a review. In: Proceedings of the 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, Cardiff, 2007. 647-648. Google Scholar

[54] Martin C A, Kolinko V G. Concealed weapons detection with an improved passive millimeter-wave imager. In: Proceedings of SPIE Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, Orlando, 2004. 252-259. Google Scholar

[55] Dou W. Researches on millimeter wave Imaging in SKL of MMW at Nanjing, China. IEICE Trans Electron, 2005, 88: 1451-1457. Google Scholar

[56] Sheen D M, Mcmakin D L, Hall T E, et al. Active millimeter-wave standoff and portal imaging techniques for personnel screening. In: Proceedings of IEEE Conference on Technologies for Homeland Security, Boston, 2009. 440-447. Google Scholar

[57] Bertl S, Detlefsen J. Effects of a reflecting background on the results of active MMW SAR imaging of concealed objects. IEEE Trans Geosci Remote Sens, 2011, 49: 3745-3752 CrossRef Google Scholar

[58] Jain V, Tzeng F, Zhou L, et al. A single-chip dual-band 22-29-GHz/77-81-GHz BiCMOS transceiver for automotive radars. IEEE J Solid-State Circ, 2009, 44: 3469-3485 CrossRef Google Scholar

[59] Wenger J. Automotive radar - status and perspectives. In: Proceedings of IEEE Compound Semiconductor Integrated Circuit Symposium, Palm Springs, 2005. Google Scholar

[60] Hasch J, Topak E, Schnabel R, et al. Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans Microw Theory Tech, 2012, 60: 845-860 CrossRef Google Scholar

[61] Cui C, Kim S K, Song R, et al. A 77-GHz FMCW radar system using on-chip waveguide feeders in 65-nm CMOS. IEEE Trans Microw Theory Tech, 2015, 63: 1-11 CrossRef Google Scholar

[62] Sarabandi K, Park M. millimeter-wave radar phenomenology of power lines and a polarimetric detection algorithm. IEEE Trans Antenna Propag, 1999, 47: 1807-1813 CrossRef Google Scholar

[63] Appleby R, Coward P, Sandersreed J N. Evaluation of a passive millimeter-wave (PMMW) imager for wire detection in degraded visual conditions. In: Proceedings of SPIE - the International Society for Optical Engineering, Orlando, 2009. 7309. Google Scholar

[64] Sarabandi K, Park M. A radar cross-section model for power lines at millimeter-wave frequencies. IEEE Trans Antenna Propag, 2003, 51: 2353-2360 CrossRef Google Scholar

[65] Hobbs P V, Locatelli J D, Biswas K R, et al. Evaluation of a 35 GHz radar for cloud physics research. J Atmos Oceanic Tech, 1985, 2: 35-48 CrossRef Google Scholar

[66] Kollias P, Albrecht B. The turbulence structure in a continental stratocumulus cloud from millimeter-wavelength radar observations. J Atmos Sci, 2000, 57: 2417-2434 CrossRef Google Scholar

[67] Kollias P, Clothiaux E E, Miller M A, et al. Millimeter-wavelength radars: new frontier in atmospheric cloud and precipitation research. Bulletin American Meteorol Soc, 2007, 88: 1608-1624 CrossRef Google Scholar

[68] Xu C Y. The present state and development trend of foreign seeker technology. Guid Fuze, 2012, 33: 11-15 [徐春夷. 国外导引头技术现状及发展趋势. 制导与引信, 2012, 33: 11-15]. Google Scholar

[69] 祝彬. 国外毫米波雷达制导技术的发展状况. 中国航天, 2007, 40-43. Google Scholar

[70] Liang P L, Dai J M. Review of terahertz science and technology. Tech Autom Appl, 2015, 34: 1-8 [梁培龙, 戴景民. 太赫兹科学技术的综述. 自动化技术与应用, 2015, 34: 1-8]. Google Scholar

[71] Zhao G Z. Progress on terahertz science and technology. Foreign Electron Meas Tech, 2014, 33: 1-6 [赵国忠. 太赫兹科学技术研究的新进展. 国外电子测量技术, 2014, 33: 1-6]. Google Scholar

[72] Ma S Y. Broadband light Boba's utensils disinfection (cabinet). China Appl, 2012, 2012: 536-540 [马少云. 宽频光波巴氏食具消毒技术(柜). 电器, 2012, 2012: 536-540]. Google Scholar

[73] Hattori T, Tukamoto K, Nakatsuka H. Time-resolved study of intense terahertz pulses generated by a large-aperture photoconductive antenna. Japanese J Appl Phys, 2001, 40: 4907-4912 CrossRef Google Scholar

[74] Stone M R, Naftaly M, Miles R E, et al. Electrical and radiation characteristics of semilarge photoconductive terahertz emitters. IEEE Trans Microw Theory Tech, 2004, 52: 2420-2429 CrossRef Google Scholar

[75] Park S G, Jin K H, Yi M, et al. Enhancement of terahertz pulse emission by optical nanoantenna. Acs Nano, 2012, 6: 2026-2031 CrossRef Google Scholar

[76] Huang Z, Yu B, Zhao G Z. Study on Terahertz source of small aperture bow tie photoconductive antenna. Laser Infrared, 2009, 39: 183-186 [黄振, 于斌, 赵国忠, 等. 小孔径蝴蝶型光电导天线太赫兹辐射源的研究. 激光与红外, 2009, 39: 183-186]. Google Scholar

[77] Shao L, Lu G, Cheng D M. Generation and recent advances in optical rectification THz sources. Laser Infrared, 2008, 38: 872-875 [邵立, 路纲, 程东明. 光整流太赫兹源及其研究进展. 激光与红外, 2008, 38: 872-875]. Google Scholar

[78] Zhang X C, Ma X F, Jin Y, et al. Terahertz optical rectification from a nonlinear organic crystal. Appl Phys Lett, 1993, 61: 3080-3082. Google Scholar

[79] Tomasino A, Parisi A, Stivala S, et al. Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling. Sci Reports, 2013, 3: 3116. Google Scholar

[80] 李德华, 戚晓东, 刘盛纲. 光整流法产生THz辐射转化率的理论分析. 中国科学E辑: 技术科学, 2009, 39: 745-750. Google Scholar

[81] Huang S W, Granados E, Huang W R, et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Opt Lett, 2013, 38: 796-798 CrossRef Google Scholar

[82] Huang Z, de C P, Depoortere I, et al. Terahertz emission profile from laser-induced air plasma. Appl Phys Lett, 2006, 88: 261103-798 CrossRef Google Scholar

[83] Minami Y, Kurihara T, Yamaguchi K, et al. High-power THz wave generation in plasma induced by polarization adjusted two-color laser pulses. Appl Phys Lett, 2013, 102: 041105-798 CrossRef Google Scholar

[84] Weiss C, Wallenstein R, Beigang R. Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces. Appl Phys Lett, 2000, 77: 4160-4162 CrossRef Google Scholar

[85] Gopakumar R, Ramanandan G K P, Adam A J L, et al. Enhanced terahertz emission by coherent optical absorption in ultrathin semiconductor films on metals. Optical Soc America, 2013, 21: 16784-16798. Google Scholar

[86] Wu X, Quan B, Xu X, et al. Effect of inhomogeneity and plasmons on terahertz radiation from GaAs (1 0 0) surface coated with rough Au film. Appl Surf Sci, 2013, 285: 853-857 CrossRef Google Scholar

[87] Huang D, Larocca T R, Chang M C F, et al. Terahertz CMOS frequency generator using linear superposition technique. IEEE J Solid-State Circ, 2008, 43: 2730-2738 CrossRef Google Scholar

[88] Razavi B. A 300-GHz fundamental oscillator in 65-nm CMOS technology. IEEE J Solid-State Circ, 2011, 46: 894-903 CrossRef Google Scholar

[89] Momeni O, Afshari E. High power Terahertz and millimeter-wave oscillator design: a systematic approach. IEEE J Solid-State Circ, 2011, 46: 583-597 CrossRef Google Scholar

[90] Steyaert W, Reynaert P. A 0.54 THz signal generator in 40 nm bulk CMOS with 22 GHz tuning range and integrated planar antenna. IEEE J Solid-State Circ, 2014, 49: 1617-1626. Google Scholar

[91] Hübers H W, Eichholz R, Pavlov S G, et al. High resolution terahertz spectroscopy with quantum cascade lasers. J Infrared Millimeter Terahertz Waves, 2013, 34: 325-341 CrossRef Google Scholar

[92] Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature, 2002, 417: 156-159 CrossRef Google Scholar

[93] Williams B S. Terahertz quantum-cascade lasers. Nature Photonics, 2007, 1: 517-525 CrossRef Google Scholar

[94] Mohan A, Wittmann A, Hugi A, et al. Room-temperature continuous-wave operation of an external-cavity quantum cascade laser. Opt Lett, 2007, 32: 2792-525 CrossRef Google Scholar

[95] Freund H P, Parker R K. 自由电子激光器. 科学(中文版), 1989, 34-40. Google Scholar

[96] Yang X F, Li M, Jin X, et al. Electron beam properties and lasing experiment of FEL. Chinese J Lasers, 2006, 33: 156-159 [杨兴繁, 黎明, 金晓, 等. 自由电子激光器电子束性能与出光. 中国激光, 2006, 33: 156-159]. Google Scholar

[97] Chang T Y, Bridges T J. Laser action at 452, 496, and 541 $\upmu$m in optically pumped CH$_{3}$F. Opt Commun, 1970, 1: 423-426 CrossRef Google Scholar

[98] Miao L, Zuo D L, Jiu Z X, et al. High energy optically pumped NH$_{3}$ terahertz laser with simple cavity. Chinese Opt Lett, 2010, 8: 411-413 CrossRef Google Scholar

[99] He Z, Zhang Y, Zhang H, et al. Study of optimal cavity parameter in optically pumped D$_{2}$O gas terahertz laser. J Infrared Millimeter Terahertz Waves, 2010, 31: 551-558. Google Scholar

[100] Huang X, Qin J, Zheng X, et al. Experimental study on miniature pulsed CH$_{3}$OH far-infrared laser. Int J Infrared Millimeter Waves, 1997, 18: 619-625 CrossRef Google Scholar

[101] Tochitsky S Y, Sung C, Trubnick S E, et al. High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO$_{2}$ laser lines. J Opt Soc America B, 2007, 24: 2509-2516. Google Scholar

[102] Ding Y J. High-power tunable Terahertz sources based on parametric processes and applications. IEEE J Sel Topics Quantum Electron, 2007, 13: 705-720 CrossRef Google Scholar

[103] Lu Z Y. Research on tunable mid-infrared and terahertz generation with pulsed CO$_{2}$ laser. Dissertation for Ph.D. Degree. Wuhan: Huazhong University of Science & Technology, 2011 [卢彦兆. 基于CO$_{2}$激光的可调谐中红外及THz 差频产生技术研究. 博士学位论文. 武汉: 华中科技大学, 2011]. Google Scholar

[104] Kawase K, Shikata J, Minamide H, et al. Arrayed silicon prism coupler for a terahertz-wave parametric oscillator. Appl Opt, 2001, 40: 1423-1426 CrossRef Google Scholar

[105] Xu D G, Zhang H, Jiang H, et al. High energy Terahertz parametric oscillator based on surface-emitted configuration. Chinese Phys Lett, 2013, 30: 024212-1426 CrossRef Google Scholar

[106] Zhong R B. Study of Terahertz transmission lines.Dissertation for Ph.D. Degree. Cheng Du: University of Electronic Science and Technology of China, 2012 [钟任斌. 太赫兹传输线研究. 博士学位论文. 成都: 电子科技大学, 2012]. Google Scholar

[107] Mcgowan R W, Gallot G, Grischkowsky D. Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides. Opt Lett, 1999, 24: 1431-1433 CrossRef Google Scholar

[108] Mendis R, Grischkowsky D. Undistorted guided-wave propagation of subpicosecond terahertz pulses. Opt Lett, 2001, 26: 846-848 CrossRef Google Scholar

[109] Mendis R, Grischkowsky D. THz interconnect with low-loss and low-group velocity dispersion. IEEE Microw Wirel Compon Lett, 2001, 11: 444-446 CrossRef Google Scholar

[110] Kanglin W, Mittleman D M. Metal wires for terahertz wave guiding. Nature, 2004, 432: 376-379 CrossRef Google Scholar

[111] Valk N C J, Planken P C M. Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires. Appl Phys Lett, 2005, 87: 071106-379 CrossRef Google Scholar

[112] Mufei G, Tae-In J, Grischkowsky D. THz surface wave collapse on coated metal surfaces. Opt Express, 2009, 17: 17088-17101 CrossRef Google Scholar

[113] Ito T, Matsuura Y, Miyagi M, et al. Flexible terahertz fiber optics with low bend-induced losses. J Opt Soc America B, 2007, 24: 1230-1235 CrossRef Google Scholar

[114] Yu R J, Zhang B, Zhang Y Q, et al. Proposal for ultralow loss hollow-core plastic bragg fiber with cobweb-structured cladding for Terahertz waveguiding. IEEE Photonic Tech Lett, 2007, 19: 910-912 CrossRef Google Scholar

[115] Qu D, Grischkowsky D, Zhang W. Terahertz transmission properties of thin, subwavelength metallic hole arrays. Opt Lett, 2004, 29: 896-898 CrossRef Google Scholar

[116] Ponseca C S, Pobre R, Estacio E, et al. Transmission of terahertz radiation using a microstructured polymer optical fiber. Opt Lett, 2008, 33: 902-904 CrossRef Google Scholar

[117] Mbonye M, Astley V, Chan W L, et al. A terahertz dual wire waveguide. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO), Baltimore, 2007. 1-2. Google Scholar

[118] Han H, Park H, Cho M, et al. Terahertz pulse propagation in a plastic photonic crystal fiber. Appl Phys Lett, 2002, 80: 2634-2636 CrossRef Google Scholar

[119] Rogalski A, Sizov F. Terahertz detectors and focal plane arrays. Opto-Electron Rev, 2011, 19: 346-404. Google Scholar

[120] Hargreaves S, Lewis R A. Terahertz imaging: materials and methods. J Mater Sci Mater Electron, 2007, 18: 299-303 CrossRef Google Scholar

[121] Sizov F F, Reva V P, Golenkov A G, et al. Uncooled detectors challenges for THz/sub-THz arrays imaging. J Infrared Millimeter Terahertz Waves, 2011, 32: 1192-1206 CrossRef Google Scholar

[122] Wei J, Olaya D, Karasik B S, et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nature Nanotech, 2007, 3: 496-500. Google Scholar

[123] Karasik B S, Olaya D, Wei J, et al. Record-low NEP in hot-electron Titanium nanobolometers. IEEE Trans Appl Supercond, 2007, 17: 293-297 CrossRef Google Scholar

[124] Siegel P H, Dengler R J. Terahertz heterodyne imaging part I: introduction and techniques. Int J Infrared Millimeter Waves, 2006, 27: 465-480. Google Scholar

[125] Siegel P H, Dengler R J. Terahertz heterodyne imaging part II: instruments. Int J Infrared Millimeter Waves, 2007, 27: 631-655 CrossRef Google Scholar

[126] Hubers H W. Terahertz heterodyne receivers. IEEE J Sel Topics Quantum Electron, 2008, 14: 378-391 CrossRef Google Scholar

[127] Crowe T W, Mattauch R J, Roser H P, et al. GaAs Schottky diodes for THz mixing applications. Proc IEEE, 1992, 80: 1827-1841 CrossRef Google Scholar

[128] Crowe T W, Bishop W L, Porterfield D W, et al. Opening the terahertz window with integrated diode circuits. IEEE J Solid-State Circ, 2005, 40: 2104-2110 CrossRef Google Scholar

[129] Sankaran S, O K K. Schottky barrier diodes for millimeter wave detection in a foundry CMOS process. IEEE Electron Device Lett, 2005, 26: 492-494 CrossRef Google Scholar

[130] Han R, Zhang Y, Kim Y, et al. Active Terahertz imaging using Schottky diodes in CMOS: array and 860-GHz pixel. IEEE J Solid-State Circ, 2013, 48: 2296-2308 CrossRef Google Scholar

[131] Rogalski A. Infrared Detectors. 2nd ed. Boca Raton: CRC Press, 2010. Google Scholar

[132] Dooley D. Sensitivity of broadband pyroelectric terahertz detectors continues to improve. Laser Focus World, 2010, 46: 49-56. Google Scholar

[133] Richards P L. Bolometers for infrared and millimeter waves. J Appl Phys, 1994, 76: 1-24 CrossRef Google Scholar

[134] Agnese P, Buzzi C, Rey P, et al. New technological development for far-infrared bolometer arrays. In: Proceedings of SPIE Infrared Technology and Applications XXV, Orlando, 2009. 284-290. Google Scholar

[135] Conwell E M. High Field Transport in Semiconductors. New York: Academic Press Inc, 1967. Google Scholar

[136] Phillips T G, Jefferts K B. A low temperature bolometer heterodyne receiver for millimeter wave astronomy. Rev Sci Instrum, 1973, 44: 1009-1014 CrossRef Google Scholar

[137] Vasilyev Y B, Usikova A A, Il'inskaya N D, et al. Highly sensitive submillimeter InSb photodetectors. Semiconductors, 2008, 42: 1234-1236 CrossRef Google Scholar

[138] Moseley H, McCammon D. High performance silicon hot electron bolometers. In: AIP Conference Proceedings, Madison, 2002. 605: 103-106. Google Scholar

[139] Gousev Y P, Gol'tsman G N, Semenov A D, et al. Broadband ultrafast superconducting NbN detector for electromagnetic radiation. J Appl Phys, 1994, 75: 3695-3697 CrossRef Google Scholar

[140] Karasik B S, Cantor R. Optical NEP in hot-electron nanobolometers. arXiv:1009.4676. Google Scholar

[141] Gershenzon E M, Gol'tsman G N, Gogidze I G, et al. Millimeter and submillimeter range mixer based on electron heating of superconducting films in the resistive state. Sov Phys Supercond, 1990, 3: 1582-1597. Google Scholar

[142] Karasik B S, Gol'tsman G N, Voronov B M, et al. Hot electron quasioptical NbN superconducting mixer. IEEE Trans Appl Supercond, 1995, 5: 2232-2235 CrossRef Google Scholar

[143] Prober D E. Superconducting terahertz mixer using a transition-edge microbolometer. Appl Phys Lett, 1993, 62: 2119-2121 CrossRef Google Scholar

[144] Skalare A, McGrath W R, Bumble B, et al. Large bandwidth and low noise in a diffusion-cooled hot-electron bolometer mixer. Appl Phys Lett, 1996, 68: 1558-1560 CrossRef Google Scholar

[145] Dyakonov M, Shur M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans Electron Dev, 1996, 43: 380-387. Google Scholar

[146] Tauk R, Teppe F, Boubanga S, et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Appl Phys Lett, 2006, 89: 253511-387 CrossRef Google Scholar

[147] Schuster F, Videlier H, Dupret A, et al. A broadband THz imager in a low-cost CMOS technology. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2011. 42-43. Google Scholar

[148] Sherry H, Grzyb J, Zhao Y, et al. A 1kpixel CMOS camera chip for 25fps real-time terahertz imaging applications. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2012. 252-254. Google Scholar

[149] Walton A J, Parkes W, Terry J G, et al. Design and fabrication of the detector technology for SCUBA-2. IEE Proc Sci Meas Tech, 2004, 151: 110-120 CrossRef Google Scholar

[150] Holland W S, Duncan W D, Audley M D, et al. SCUBA-2: a new generation submillimeter imager for the James Clerk Maxwell Telescope. Bull American Astron Soc, 2001, 199: 103-106. Google Scholar

[151] Wang Y, Yang B, Tian Y, et al. Micromachined thick mesh filters for millimeter-wave and terahertz applications. IEEE Trans Terahertz Sci Tech, 2014, 4: 247-253 CrossRef Google Scholar

[152] Dickie R, Cahill R, Fusco V, et al. THz frequency selective surface filters for earth observation remote sensing instruments. IEEE Trans Terahertz Sci Tech, 2011, 1: 450-461 CrossRef Google Scholar

[153] Hu J, Xie S, Zhang Y. Micromachined Terahertz rectangular waveguide bandpass filter on silicon-substrate. IEEE Microw Wirel Compon Lett, 2012, 22: 636-638 CrossRef Google Scholar

[154] Zhuang J, Hao Z-C, Hong W. Silicon micromachined Terahertz bandpass filter with elliptic cavities. IEEE Trans Terahertz Sci Tech, 2015, 5: 1040-1047 CrossRef Google Scholar

[155] Cheng W, Bin L, Jie L, et al. 140GHz waveguide H ladder bandpass filter. In: Proceedings of International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shenzhen, 2012. 1-4. Google Scholar

[156] Lu B, Cui B H. Analysis and design of terahertz waveguide filter. High Power Laser Particle Beams, 2013, 25: 1527-1529 [陆彬, 崔博华. 太赫兹波导滤波器的分析与设计. 强激光与粒子束, 2013, 25: 1527-1529]. Google Scholar

[157] Zhu Z, Zhang X, Gu J, et al. A metamaterial-based Terahertz low-pass filter with low insertion loss and sharp rejection. IEEE Trans Terahertz Sci Tech, 2014, 1: 832-837. Google Scholar

[158] N$\breve{\rm e}$mec H, Duvillaret L, Garet F, et al. Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect. J Appl Phys, 2004, 96: 4072-4075 CrossRef Google Scholar

[159] Chen C-Y, Pan C-L, Hsieh C-F, et al. Liquid-crystal-based terahertz tunable Lyot filter. Appl Phys Lett, 2006, 88: 101107-4075 CrossRef Google Scholar

[160] Libon I H, Baumgärtner S, Hempel M, et al. An optically controllable terahertz filter. Appl Phys Lett, 2000, 76: 2821-2823 CrossRef Google Scholar

[161] Xue C M, Liu J S, Zheng Z, et al. Terahertz filters. Laser Optoelectron Progress, 2008, 45: 43-49 [薛超敏, 刘建胜, 郑铮, 等. 太赫兹滤波器. 激光与光电子学进展, 2008, 45: 43-49]. Google Scholar

[162] Wolf G, Prigent G, Rius E, et al. Band-pass coplanar filters in the G-frequency band. IEEE Microw Wirel Compon Lett, 2005, 15: 799-801 CrossRef Google Scholar

[163] Prigent G, Gianesello F, Gloria D, et al. Bandpass filter for millimeter-wave applications up to 220 GHz integrated in advanced thin SOI CMOS technology on High Resistivity substrate. In: Proceedings of European Microwave Conference, Munich, 2007. 676-679. Google Scholar

[164] Xu Q, Bi X, Wu G. Ultra-compacted sub-terahertz bandpass filter in 0.13 mm SiGe. Electron Lett, 2012, 48: 570-571. Google Scholar

[165] Liu J, Yu Z P, Sun L L. A broadband model over 1-220 GHz for GSG pad structures in RF CMOS. IEEE Electron Device Lett, 2014, 35: 696-698 CrossRef Google Scholar

[166] Clifton B J, Alley G D, Murphy R A, et al. High-performance quasi-optical GaAs monolithic mixer at 110 GHz. IEEE Trans Electron Devices, 1981, 28: 155-157 CrossRef Google Scholar

[167] Douvalis V, Hao Y. A monolithic active conical horn antenna arrays for millimeter and sub-millimeter wave applications. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, Monterey, 2004. 567-570. Google Scholar

[168] Johansson J F, Whyborn N D. The diagonal horn as a sub-millimeter wave antenna. IEEE Trans Microw Theory Tech, 1992, 40: 795-800 CrossRef Google Scholar

[169] Okumura S K, Chikada Y, Kamazaki T, et al. Atacama compact array correlator for atacama large millimeter/submillimeter array. arXiv:1106.4076. Google Scholar

[170] Payne J M. Millimeter and submillimeter wavelength radioastronomy. Proc IEEE, 1989, 77: 993-1017 CrossRef Google Scholar

[171] Nagatsuma T, Hirata A, Sato Y, et al. Sub-terahertz wireless communications technologies. In: Proceedings of the 18th International Conference on Applied Electromagnetics and Communications, Dubrovnik, 2005. 1-4. Google Scholar

[172] Ito H, Nakajima F, Furuta T, et al. Photonic terahertz-wave generation using antenna-integrated. Electron Lett, 2003, 39: 1828-1829 CrossRef Google Scholar

[173] Ren Y-J, Lv P, Chang K. Broadband terahertz antenna for wide band gap semiconductor photoconductive switches. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, San Diego, 2008. 1-4. Google Scholar

[174] Yu M, Xu W W, An D Y, et al. Design of planar terahertz antennas. J Terahertz Sci Electron Inf Tech, 2015, 13: 369-373 [郁梅, 许伟伟, 安德越, 等. 太赫兹平面天线的设计. 太赫兹科学与电子信息学报, 2015, 13: 369-373]. Google Scholar

[175] Zhang Q G. Investigation of photoconductive Terahertz antenna. Dissertation for Ph.D. Degree. Cheng Du: University of Electronic Science and Technology of China, 2013 [张清刚. 光电导太赫兹天线的研究. 博士学位论文. 成都: 电子科技大学, 2013]. Google Scholar

[176] Pacebutas V, Bici$\bar{\rm u}$nas A, Balakauskas S, et al. Terahertz time-domain-spectroscopy system based on femtosecond Yb: fiber laser and GaBiAs photoconducting components. Appl Phys Lett, 2010, 97: 031111-1829 CrossRef Google Scholar

[177] Hao J, Hanson G W. Infrared and optical properties of carbon nanotube dipole antennas. IEEE Trans Nanotech, 2006, 5: 766-775 CrossRef Google Scholar

[178] Nenzi P, Tripaldi F, Varlamava V, et al. On-chip THz 3D antennas. In: Proceedings of IEEE 62nd Electronic Components and Technology Conference, San Diego, 2012. 102-108. Google Scholar

[179] Yang X F. Study on terahertz subharmonic mixer based on the planar schottky diode. Dissertation for Ph.D. Degree. Cheng Du: University of Electronic Science and Technology of China, 2012 [杨晓帆. 基于平面肖特基二极管的太赫兹分谐波混频器研究. 博士学位论文. 成都: 电子科技大学, 2012]. Google Scholar

[180] Shewchun J, Clarke R A, Temple V A K. Experimentally observed admittance properties of the semiconductor,Insulator,Semiconductor (SIS) diode. IEEE Trans Electron Devices, 1972, 19: 1044-1050 CrossRef Google Scholar

[181] Gerecht E, Zhuang Y, Yngvesson K S, et al. NbN hot electron bolometric mixers-a new technology for low-noise THz receivers. IEEE Trans Microw Theory Tech, 1999, 47: 2519-2527 CrossRef Google Scholar

[182] Jang M, Kim Y, Shin J, et al. Characterization of erbium-silicided Schottky diode junction. IEEE Electron Device Lett, 2005, 26: 354-356 CrossRef Google Scholar

[183] van Duzer T, Turner C W. Principles of superconductive devices and circuits. Upper Saddle River: Prentice Hall PTR, 1981. Google Scholar

[184] 巴罗尼.A, 帕特诺.G, 著. 崔广霁, 孟小凡, 译. 约瑟夫森效应原理和应用. 北京: 中国计量出版社, 1988. Google Scholar

[185] Kawamura J, Chen J, Miller D, et al. Low-noise submillimeter-wave NbTiN superconducting tunnel junction mixers. Appl Phys Lett, 1999, 75: 4013-4015 CrossRef Google Scholar

[186] Shan W, Yang J, Shi S, et al. Development of superconducting spectroscopic array receiver: a multibeam 2SB SIS receiver for millimeter-wave radio astronomy. IEEE Trans Terahertz Sci Tech, 2012, 2: 593-604 CrossRef Google Scholar

[187] Thomas B, Maestrini A, Beaudin G. A low-noise fixed-tuned 300-360-GHz sub-harmonic mixer using planar Schottky diodes. IEEE Microw Wirel Compon Lett, 2005, 15: 865-867 CrossRef Google Scholar

[188] Ederra I, Azcona L, Alderman B, et al. A 250 GHz subharmonic mixer design using EBG technology. IEEE Trans Antennas Propag, 2007, 55: 2974-2982 CrossRef Google Scholar

[189] Thomas B, Alderman B, Matheson D, et al. A combined 380 GHz mixer/doubler circuit based on planar Schottky diodes. IEEE Microw Wirel Compon Lett, 2008, 18: 353-355 CrossRef Google Scholar

[190] Wilkinson P, Henry M, Wang H, et al. A 664 GHz sub-harmonic Schottky mixer. In: Proceedings of the 21st International Symposium on Space Terahertz Technology, Oxford, 2010. 413. Google Scholar

[191] Moussessian A, Wanke M C, Li Y, et al. A terahertz grid frequency doubler. IEEE Trans Microw Theory Tech, 1998, 46: 1976-1981 CrossRef Google Scholar

[192] Han R, Afshari E. A high-power broadband passive Terahertz frequency doubler in CMOS. IEEE Trans Microw Theory Tech, 2013, 61: 1150-1160 CrossRef Google Scholar

[193] Woolard D L, Brown E R, Pepper M, et al. Terahertz frequency sensing and imaging: a time of reckoning future applications? Proc IEEE, 2005, 93: 1722-1743. Google Scholar

[194] Mittleman D M, Gupta M, Neelamani R, et al. Recent advances in terahertz imaging. Appl Phys B: Lasers Opt, 1999, 68: 1085-1094 CrossRef Google Scholar

[195] McMillan R W. Terahertz imaging, millimeter-wave radar. In: Advances in Sensing with Security Applications. Berlin: Springer, 2006. 243-268. Google Scholar

[196] Weg C A, Spiegel W V, Henneberger R, et al. Fast active THz cameras with ranging capabilities. J Infrared Millimeter Terahertz Waves, 2009, 30: 1281-1296. Google Scholar

[197] Kulesa C. Terahertz spectroscopy for astronomy: from comets to cosmology. IEEE Trans Terahertz Sci Tech, 2011, 1: 232-240 CrossRef Google Scholar

[198] Davies S R. Receiver technology for terahertz astronomy. In: Proceedings of IEE Colloquium on Terahertz Technology and Its Applications, London, 1997. 1-5. Google Scholar

[199] Walker C K, Kulesa C A. Terahertz astronomy from the coldest place on earth. In: Proceedings of the Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Williamsburg, 2005. 1: 3-4. Google Scholar

[200] Wild W. Terahertz heterodyne technology for astronomy and planetary science. In: Proceedings of Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, Cardiff, 2007. 323-325. Google Scholar

[201] Zhang W, Lei Y Z. Progress in terahertz nondestructive testing. Chinese J Sci Instrum, 2008, 29: 1563-1568 [张雯, 雷银照. 太赫兹无损检测的进展. 仪器仪表学报, 2008, 29: 1563-1568]. Google Scholar

[202] Adam A J L, Planken P C M, Meloni S, et al. TeraHertz imaging of hidden paint layers on canvas. Optics Express, 2009, 17: 3407-240 CrossRef Google Scholar

[203] Zhong H, Xu J, Xie X, et al. Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens J, 2005, 5: 203-208 CrossRef Google Scholar

[204] Yamashita M, Otani C, Kawase K, et al. Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope. Appl Phys Lett, 2008, 93: 041117-208 CrossRef Google Scholar

[205] Takahashi H, Hosoda M. Frequency domain spectroscopy of free-space terahertz radiation. Appl Phys Lett, 2000, 77: 1085-1087 CrossRef Google Scholar

[206] Woodward R M, Cole B E, Wallace V P, et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys Medicine Biol, 2002, 47: 3853-3863 CrossRef Google Scholar

[207] Ashworth P C, Pickwell-MacPherson E, Provenzano E, et al. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt Express, 2009, 17: 12444-3863 CrossRef Google Scholar

[208] Orlando A R, Gallerano G P. Terahertz radiation effects and biological applications. J Infrared Millimeter Terahertz Waves, 2009, 30: 1308-1318. Google Scholar

[209] Siegel P H. Terahertz technology in biology and medicine. In: Proceedings of IEEE MTT-S International Microwave Symposium Digest, Fort Worth, 2004. 3: 1575-1578. Google Scholar

[210] Nagel M, Bolivar P H, Brucherseifer M, et al. Integrated THz technology for label-free genetic diagnostics. Appl Phys Lett, 2002, 80: 154-156 CrossRef Google Scholar

[211] Brucherseifer M, Nagel M, Bolivar P H, et al. Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl Phys Lett, 2000, 77: 4049-4051 CrossRef Google Scholar

[212] Han P Y, Cho G C, Zhang X-C. Time-domain transillumination of biological tissues with terahertz pulses. Opt Lett, 2000, 25: 242-244 CrossRef Google Scholar

[213] Huang S, Wang Y D, Ahuja A, et al. Tissue characterization using terahertz pulsed imaging in reflection geometry. Phys Medicine Biol, 2009, 54: 149-160 CrossRef Google Scholar

[214] Huang S, Ashworth P C, Kan K W, et al. Improved sample characterization in terahertz reflection imaging and spectroscopy. Opt Express, 2009, 17: 3848-3854 CrossRef Google Scholar

[215] Chen Y, Huang S, Pickwell-MacPherson E. Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy. Opt Express, 2010, 18: 1177-1190 CrossRef Google Scholar

[216] Png G M, Falconer R J, Fischer B M, et al. Terahertz spectroscopic differentiation of microstructures in protein gels. Opt Express, 2009, 17: 13102-1190 CrossRef Google Scholar

[217] Kiwa T, Kondo Y, Minami Y, et al. Terahertz chemical microscope for label-free detection of protein complex. Appl Phys Lett, 2010, 96: 211114-1190 CrossRef Google Scholar

[218] Kemp M C, Cluff J A, Tribe W R. Security applications of terahertz technology. Proc Spie, 2003, 5070: 44-52 CrossRef Google Scholar

[219] Cook D J, Maislin G, Allen M G. Through container THz sensing: applications for explosives screening. In: Proceedings of SPIE Terahertz and Gigahertz Electronics and Photonics III, San Jose, 2004. 5354. Google Scholar

[220] Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications-explosives, weapons and drugs. Semicon Sci Tech, 2005, 20: 266-280 CrossRef Google Scholar

[221] Kawase K, Ogawa Y, Watanabe Y, et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express, 2003, 11: 2549-2554 CrossRef Google Scholar

[222] Kawase K. Terahertz imaging for drug detection and large-scale integrated circuit inspection. Opt Photon News, 2004, 15: 34-39. Google Scholar

[223] Tribe W R, Newnham D A, Taday P F, et al. Hidden object detection: security applications of terahertz technology. In: Proceedings of SPIE Terahertz and Gigahertz Electronics and Photonics III, San Jose, 2004. 5354: 168-176. Google Scholar

[224] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications. J Appl Phys, 2010, 107: 111101-39 CrossRef Google Scholar

[225] Piesiewicz R, Kleine-Ostmann T, Krumbholz N, et al. Short-range ultra-broadband Terahertz communications: concepts and perspectives. IEEE Antennas Propag Mag, 2007, 49: 24-39. Google Scholar

[226] Song H-J, Nagatsuma T. Present and future of terahertz communications. IEEE Trans Terahertz Sci Tech, 2011, 1: 256-263 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1