logo

SCIENTIA SINICA Informationis, Volume 46, Issue 8: 1035-1052(2016) https://doi.org/10.1360/N112016-00070

Efficient signal emitters and detectors

More info
  • ReceivedMar 29, 2016
  • AcceptedMay 26, 2016

Abstract

This paper summarizes recent progress in studies on signal emitters and detector devices. The studies are grouped into five aspects: design of THz/LWIR devices, development of simulation and testing technology, research on THz/LWIR material growth and devices, progress made in millimeter wave RF devices, vacuum/superconducting electronic devices, and advances in artificial electromagnetic materials and devices. Potential important future directions in this area are also discussed.


References

[1] Viti L, Coquillat D, Politano A, et al. Plasma-wave terahertz detection mediated by topological insulators surface states. Nano Lett, 2016, 16: 80-87 CrossRef Google Scholar

[2] Cai X H, Sushkov A B, Jadidi M M, et al. Plasmon-enhanced terahertz photodetection in graphene. Nano Lett, 2015, 15: 4295-4302 CrossRef Google Scholar

[3] Titova L V, Pint C L, Zhang Q, et al. Generation of terahertz radiation by optical excitation of aligned carbon nanotubes. Nano Lett, 2015, 15: 3267-3272 CrossRef Google Scholar

[4] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Mater, 2012, 11: 865-871 CrossRef Google Scholar

[5] Prechtel L, Song L, Schuh D, et al. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nature Commun, 2012, 3: 646. Google Scholar

[6] Zak A, Andersson M A, Bauer M, et al. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. Nano Lett, 2014, 14: 5834-5838. Google Scholar

[7] Berry C W, Wang N, Hashemi M R, et al. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nature Commun, 2013, 4: 1622-5838 CrossRef Google Scholar

[8] He X W, Fujimura N, Lloyd J M, et al. Carbon nanotube terahertz detector. Nano Lett, 2014, 14: 3953-3958 CrossRef Google Scholar

[9] Yan J, Kim M H, Elle J A, et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech, 2012, 7: 472-478 CrossRef Google Scholar

[10] Di Pietro P, Ortolani M, Limaj O, et al. Observation of dirac plasmons in a topological insulator. Nature Nanotech, 2013, 8: 556-560 CrossRef Google Scholar

[11] Cai X, Sushkov A B, Suess R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nature Nanotech, 2014, 9: 814-819 CrossRef Google Scholar

[12] Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech, 2014, 9: 780-793 CrossRef Google Scholar

[13] Tong J Y, Muthee M, Chen S Y, et al. Antenna enhanced graphene THz emitter and detector. Nano Lett, 2015, 15: 5295-5301 CrossRef Google Scholar

[14] Viti L, Hu J, Coquillat D, et al. Black phosphorus terahertz photodetectors. Adv Mater, 2015, 27: 5567-5572 CrossRef Google Scholar

[15] Vitiello M S, Coquillat D, Viti L, et al. Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. Nano Lett, 2012, 12: 96-101 CrossRef Google Scholar

[16] Rinzan M, Jenkins G, Drew H D, et al. Carbon nanotube quantum dots as highly sensitive terahertz-cooled spectrometers. Nano Lett, 2012, 12: 3097-3100 CrossRef Google Scholar

[17] Sirtori C, Barbieri S, Colombelli R. Wave engineering with THz quantum cascade lasers. Nature Photon, 2013, 7: 691-701 CrossRef Google Scholar

[18] Burghoff D, Kao T Y, Han N R, et al. Terahertz laser frequency combs. Nature Photon, 2014, 8: 462-467 CrossRef Google Scholar

[19] Xu G Y, Colombelli R, Khanna S P, et al. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures. Nature Commun, 2012, 3: 952-467 CrossRef Google Scholar

[20] Rosch M, Scalari G, Beck M, et al. Octave-spanning semiconductor laser. Nature Photon, 2015, 9: 42-47. Google Scholar

[21] Geiser M, Castellano F, Scalari G, et al. Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells. Phys Rev Lett, 2012, 108: 106402-47 CrossRef Google Scholar

[22] Scalari G, Maissen C, Turcinkova D, et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science, 2012, 335: 1323-1326 CrossRef Google Scholar

[23] Mahler L, Tredicucci A, Beltram F, et al. Quasi-periodic distributed feedback laser. Nature Photon, 2010, 4: 165-169. Google Scholar

[24] Vijayraghavan K, Jiang Y F, Jang M, et al. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers. Nature Commun, 2013, 4: 2021. Google Scholar

[25] Walther C, Scalari G, Amanti M I, et al. Microcavity laser oscillating in a circuit-based resonator. Science, 2010, 327: 1495-1497 CrossRef Google Scholar

[26] Vitiello M S, Consolino L, Bartalini S, T , et al. Quantum-limited frequency fluctuations in a terahertz laser. Nature Photon, 2012, 6: 525-528 CrossRef Google Scholar

[27] Zanotto S, Mezzapesa F P, Bianco F, et al. Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption. Nature Phys, 2014, 10: 830-834 CrossRef Google Scholar

[28] Barbieri S, Gellie P, Santarelli G, et al. Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser. Nature Photon, 2010, 4: 636-640. Google Scholar

[29] Consolino L, Taschin A, Bartolini P, et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nature Commun, 2012, 3: 1040-640 CrossRef Google Scholar

[30] Barbieri S, Ravaro M, Gellie P, et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nature Photon, 2011, 5: 306-313 CrossRef Google Scholar

[31] Vitiello M S, Nobile M, Ronzani A, et al. Photonic quasi-crystal terahertz lasers. Nature Commun, 2014, 5: 5884-313 CrossRef Google Scholar

[32] Lei W, Antoszewski J, Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl Phys Rev, 2015, 2: 041303-313 CrossRef Google Scholar

[33] Hall D J, Buckle L, Gordon N T, et al. High-performance long-wavelength HgCdTe infrared detectors grown on silicon substrates. Appl Phys Lett, 2004, 85: 2113-2115 CrossRef Google Scholar

[34] Martyniuk P, Rogalski A. MWIR barrier detectors versus HgCdTe photodiodes. Infrared Phys Tech, 2015, 70: 125-128 CrossRef Google Scholar

[35] Hu W D, Ye Z H, Liao L, et al. 128 x 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Opt Lett, 2014, 39: 5184-5187 CrossRef Google Scholar

[36] Boieriu P, Grein C H, Velicu S, et al. Effects of hydrogen on majority carrier transport and minority carrier lifetimes in long wavelength infrared HgCdTe on Si. Appl Phys Lett, 2006, 88: 062106-5187 CrossRef Google Scholar

[37] Jozwikowska A, Jozwikowski K, Antoszewski J, et al. Generation-recombination effects on dark currents in CdTe-passivated midwave infrared HgCdTe photodiodes. J Appl Phys, 2005, 98: 014504-5187 CrossRef Google Scholar

[38] Jozwikowski K, Kopytko M, Rogalski A, et al. Enhanced numerical analysis of current-voltage characteristics of long wavelength infrared n-on-p HgCdTe photodiodes. J Appl Phys, 2010, 108: 074519-5187 CrossRef Google Scholar

[39] Qiu W C, Hu W D, Lin T, et al. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope. Appl Phys Lett, 2014, 105: 191106-5187 CrossRef Google Scholar

[40] Qiu W C, Hu W D, Chen L, et al. Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes. IEEE Trans Electron Dev, 2015, 62: 1926-1931 CrossRef Google Scholar

[41] Hu W D, Chen X S, Ye Z H, et al. Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays. IEEE J Sel Topics Quantum Electron, 2013, 19: 4100107. Google Scholar

[42] Martyniuk P, Antoszewski J, Martyniuk M, et al. New concepts in infrared photodetector designs. Appl Phys Rev, 2014, 1: 041102-1931 CrossRef Google Scholar

[43] Zuo D, Qiao P F, Wasserman D, et al. Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control. Appl Phys Lett, 2013, 102: 141107-1931 CrossRef Google Scholar

[44] Lee S J, Ku Z Y, Barve A, et al. A monolithically integrated plasmonic infrared quantum dot camera. Nature Commun, 2011, 2: 286-1931 CrossRef Google Scholar

[45] Stanley R. Plasmonics in the mid-infrared. Nature Photon, 2012, 6: 409-411 CrossRef Google Scholar

[46] Chang C C, Sharma Y D, Kim Y S, et al. A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett, 2010, 10: 1704-1709 CrossRef Google Scholar

[47] Schuster J, Bellotti E. Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays. Opt Express, 2013, 21: 14712-14727 CrossRef Google Scholar

[48] Razeghi M, Nguyen B M. Advances in mid-infrared detection and imaging: a key issues review. Rep Prog Phys, 2014, 77: 082401-14727 CrossRef Google Scholar

[49] Chen G X, Haddadi A, Hoang A M, et al. Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application. Opt Lett, 2015, 40: 45-47 CrossRef Google Scholar

[50] Hoang A M, Chen G, Chevallier R, et al. High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection. Appl Phys Lett, 2014, 104: 251105-47 CrossRef Google Scholar

[51] Tian Z B, Schuler-Sandy T, Krishna S. Electron barrier study of mid-wave infrared interband cascade photodetectors. Appl Phys Lett, 2013, 103: 083501-47 CrossRef Google Scholar

[52] DeCuir E A, Meissner G P, Wijewarnasuriya P S, et al. Long-wave type-II superlattice detectors with unipolar electron and hole barriers. Opt Eng, 2012, 51: 124001-47 CrossRef Google Scholar

[53] Haddadi A, Ramezani-Darvish S, Chen G X, et al. High operability 1024$\times$1024 long wavelength type-II superlattice focal plane array. IEEE J Quantum Electron, 2012, 48: 221-228 CrossRef Google Scholar

[54] Steenbergen E H, Connelly B C, Metcalfe G D, et al. Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb. Appl Phys Lett, 2011, 99: 251110-228 CrossRef Google Scholar

[55] Yang R Q, Tian Z B, Klem J F, et al. Interband cascade photovoltaic devices. Appl Phys Lett, 2010, 96: 063504-228 CrossRef Google Scholar

[56] Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays. J Appl Phys, 2009, 105: 091101-228 CrossRef Google Scholar

[57] Ting D Z Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector. Appl Phys Lett, 2009, 95: 023508-228 CrossRef Google Scholar

[58] Kim H S, Plis E, Rodriguez J B, et al. Mid-IR focal plane array based on type-II InAs/GaSb strain layer superlattice detector with nBn design. Appl Phys Lett, 2008, 92: 183502-228 CrossRef Google Scholar

[59] Mohseni H, Michel E, Sandoen J, et al. Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range. Appl Phys Lett, 1997, 71: 1403-1405 CrossRef Google Scholar

[60] Youngdale E R, Meyer J R, Hoffman C A, et al. Auger lifetime enhancement in Inas-Ga1-Xinxsb superlattices. Appl Phys Lett, 1994, 64: 3160-3162 CrossRef Google Scholar

[61] Smith D L, Mailhiot C. Proposal for strained type-II superlattice infrared detectors. J Appl Phys, 1987, 62: 2545-2548 CrossRef Google Scholar

[62] Risacher C, Güsten R, Stutzki J, et al. First supra-THz heterodyne array receivers for astronomy with the SOFIA observatory. IEEE Trans Terahertz Sci Tech, 2016, 6: 199-211 CrossRef Google Scholar

[63] Dahlberg K, Kiuru T, Mallat J, et al. Mixer-based characterization of millimeter-wave and terahertz single-anode and antiparallel schottky diodes. IEEE Trans Terahertz Sci Tech, 2014, 4: 552-559 CrossRef Google Scholar

[64] Grossman E N, Leong K, Mei X B, et al. Low-frequency noise and passive imaging with 670 GHz HEMT low-noise amplifiers. IEEE Trans Terahertz Sci Tech, 2014, 4: 749-752 CrossRef Google Scholar

[65] Seeds A J, Shams H, Fice M J, et al. TeraHertz photonics for wireless communications. J Lightwave Tech, 2015, 33: 579-587 CrossRef Google Scholar

[66] Zamora A, Mei G, Leong K M K H, et al. A submillimeter wave InP HEMT multiplier chain. IEEE Microw Wirel Comp Lett, 2015, 25: 591-593 CrossRef Google Scholar

[67] Samoska L A. An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime. IEEE Trans Terahertz Sci Tech, 2011, 1: 9-24 CrossRef Google Scholar

[68] Chattopadhyay G. Technology, capabilities, and performance of low power terahertz sources. IEEE Trans Terahertz Sci Tech, 2011, 1: 33-53 CrossRef Google Scholar

[69] Antes J, Boes F, Meier D, et al. Ultra-wideband single-balanced transmitter-MMIC for 300 GHz communication systems. In: Proceedings of IEEE Mtt-S International Microwave Symposium (Ims), Tampa, 2014. 1-3. Google Scholar

[70] Siegel P H. Terahertz technology. IEEE Trans Microw Theory Tech, 2002, 50: 910-928 CrossRef Google Scholar

[71] Armstrong C M. The truth about terahertz. IEEE Spectrum, 2012, 49: 36-41. Google Scholar

[72] Rosker M. Terahertz Device Characterization and Security Applications. In: Proceedings of MTT Terahertz Workshop. 2007. Google Scholar

[73] Shur M. Terahertz technology: devices and applications. In: Proceedings of the 31st European Solid-State Device Research Conference, Grenoble, 2005. 13-21. Google Scholar

[74] Booske J H, Dobbs R J, Joye C D, et al. Vacuum electronic high power terahertz sources. IEEE Trans Terahertz Sci Tech, 2011, 1: 54-75 CrossRef Google Scholar

[75] Zhang Z. Research progress of THz traveling wave tubes. Laser Infrared, 2012, 42: 250-257. Google Scholar

[76] Ryskin N M, Karetnikova T A, Rozhnev A G, et al. Development and modeling of a sheet-beam sub-THz traveling wave tube. In: Proceedings of IEEE International Vacuum Electronics Conference (IVEC), Beijing, 2015. 1-2. Google Scholar

[77] Paoloni C, Carlo A D, Brunetti F, et al. Design and fabrication of a 1 THz backward wave amplifier. Terahertz Sci Tech, 2011, 4: 149-163. Google Scholar

[78] Borisov A A, Budzinsky U A, Bykovsky S V, et al. The development of vacuum microwave devices in ISTOK. In: Proceedings of IEEE International Vacuum Electronics Conference, Bangalore, 2011. 437-438. Google Scholar

[79] Tucek J C, Basten M A, Gallagher D A, et al. 220 GHz power amplifier development at Northrop Grumman. In: Proceedings of the 15th International Vacuum Electronics Conference (IVEC), Monterey, 2014. 553-554. Google Scholar

[80] Liu W, Zhang Z, Zhao C, et al. Test of terahertz extended interaction oscillator. In: Proceedings of IEEE International Vacuum Electronics Conference (IVEC), Beijing, 2015. 1-2. Google Scholar

[81] Hadfield R H, Johansson G. Superconducting Devices in Quantum Optics. Berlin: Springer, 2016. Google Scholar

[82] Marsili F, Verma V B, Stern J A, et al. Detecting single infrared photons with 93{\. Google Scholar

[83] Saglamyurek E, Jin J, Verma V B, et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nature Photon, 2015, 9: 83-87 CrossRef Google Scholar

[84] Renema J J, Gaudio R, Wang Q, et al. Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector. Phys Rev Lett, 2014, 112: 117604-87 CrossRef Google Scholar

[85] Li H, Chen S, You L, et al. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging. Opt Express, 2016, 24: 3535-3542 CrossRef Google Scholar

[86] Yang X Y, Li H, Zhang W J, et al. Superconducting nanowire single photon detector with on-chip bandpass filter. Opt Express, 2014, 22: 16267-16272 CrossRef Google Scholar

[87] Baryshev A, Baselmans J J A, Freni A, et al. Progress in antenna coupled kinetic inductance detectors. IEEE Trans Terahertz Sci Tech, 2011, 1: 112-123 CrossRef Google Scholar

[88] Shurakov A, Lobanov Y, Goltsman G. Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications. Supercond Sci Tech, 2016, 29: 023001-123 CrossRef Google Scholar

[89] Holland W S, Bintley D, Chapin E L, et al. SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell telescope. Mon Not Royal Astron Soc, 2013, 430: 2513-2533 CrossRef Google Scholar

[90] Zhang W, Khosropanah P, Gao J R, et al. Quantum noise in a terahertz hot electron bolometer mixer. Appl Phys Lett, 2010, 96: 111113-2533 CrossRef Google Scholar

[91] Megrant A, Neill C, Barends R, et al. Planar superconducting resonators with internal quality factors above one million. Appl Phys Lett, 2012, 100: 113510-2533 CrossRef Google Scholar

[92] de Visser P J, Baselmans J J A, Bueno J, et al. Fluctuations in the electron system of a superconductor exposed to a photon flux. Nature Commun, 2014, 5: 3130. Google Scholar

[93] Bakurskiy S V, Klenov N V, Soloviev I I, et al. Theoretical model of superconducting spintronic SIsFS devices. Appl Phys Lett, 2013, 102: 192603-2533 CrossRef Google Scholar

[94] Calkins B, Lita A E, Fox A E, et al. Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks. Appl Phys Lett, 2011, 99: 241114-2533 CrossRef Google Scholar

[95] Yates S J C, Baselmans J J A, Endo A, et al. Photon noise limited radiation detection with lens-antenna coupled microwave kinetic inductance detectors. Appl Phys Lett, 2011, 99: 073505-2533 CrossRef Google Scholar

[96] Zheludev N I. The road ahead for metamaterials. Science, 2010, 328: 582-583 CrossRef Google Scholar

[97] Costantini D, Lefebvre A, Coutrot A L, et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys Rev Appl, 2015, 4: 014023-583 CrossRef Google Scholar

[98] Luo L, Chatzakis I, Wang J G, et al. Broadband terahertz generation from metamaterials. Nature Commun, 2014, 5: 3055. Google Scholar

[99] Hao J M, Zhou L, Qiu M. Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys Rev B, 2011, 83: 165107-583 CrossRef Google Scholar

[100] Hao J M, Wang J, Liu X L, et al. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett, 2010, 96: 251104-583 CrossRef Google Scholar

[101] Hao J M, Yuan Y, Ran L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett, 2007, 99: 251104. Google Scholar

[102] Qu C, Ma S J, Hao J M, et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys Rev Lett, 2015, 115: 235503-583 CrossRef Google Scholar

[103] Liu X L, Tyler T, Starr T, et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett, 2011, 107: 045901-583 CrossRef Google Scholar

[104] Argyropoulos C, Le K Q, Mattiucci N, et al. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Phys Rev B, 2013, 87: 205112-583 CrossRef Google Scholar

[105] Schaich W L, Puscasu I. Tuning infrared emission from microstrip arrays. Phys Rev B, 2012, 86: 245423-583 CrossRef Google Scholar

[106] Lu D, Kan J J, Fullerton E E, et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nature Nanotech, 2014, 9: 48-53 CrossRef Google Scholar

[107] Mattiucci N, D'Aguanno G, Alu A, et al. Taming the thermal emissivity of metals: a metamaterial approach. Appl Phys Lett, 2012, 100: 201109-53 CrossRef Google Scholar

[108] Puscasu I, Schaich W L. Narrow-band, tunable infrared emission from arrays of microstrip patches. Appl Phys Lett, 2008, 92: 233102-53 CrossRef Google Scholar

[109] Brucoli G, Bouchon P, Haidar R, et al. High efficiency quasi-monochromatic infrared emitter. Appl Phys Lett, 2014, 104: 081101-53 CrossRef Google Scholar

[110] Redding B, Liew S F, Sarma R, et al. Compact spectrometer based on a disordered photonic chip. Nature Photon, 2013, 7: 746-751 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号