logo

SCIENTIA SINICA Informationis, Volume 47, Issue 3: 351-361(2017) https://doi.org/10.1360/N112016-00071

Spatial static bifurcation of 2-D discrete dynamical systems and its control}{Spatial static bifurcation of 2-D discrete dynamical systems and its control

More info
  • ReceivedApr 19, 2016
  • AcceptedAug 10, 2016
  • PublishedDec 12, 2016

Abstract

As bifurcation control has remained a hot research field in recent years, a unified time-delayed feedback control method is adopted in this paper to control the spatial static bifurcation of 2-D discrete dynamical systems. By transferring the existing bifurcation or by producing a new fork-shaped, trans-critical, or saddle-node bifurcation, this method determines and then controls the spatial static bifurcation of 2-D discrete dynamical systems.


Funded by

国家自然科学基金重点项目(61533011)

国家自然科学面上基金(61273088)


References

[1] Abed E H, Fu J H. Local feedback stabilization and bifurcation control, I. Bifurcation. Syst Control Lett, 1986, 7: 11-17 CrossRef Google Scholar

[2] Chen G R, Lu J L. Bifurcation in discretw-time delay-feedback control system. Int J Biburcation Chaos, 1999, 9: 287-293 CrossRef Google Scholar

[3] Wang H O, Abed E H. Bifurcation control of a chaotic system. Automatic, 1995, 31: 1213-1226. Google Scholar

[4] Brant M E, Chen G R. Hopf Bifurcation Analysis: A Frequency Domain Approach. Singapore: World Scientific, 1996. 13-34. Google Scholar

[5] Moiola J L, Chen G R. Bifurcation control of two nonlinear models of cardiac activity. IEEE Trans Circuit Syst I, 1997, 44: 1031-1034 CrossRef Google Scholar

[6] Luo X S, Chen G R, Wang B H, et al. Hybird control of period-doubling bifurcation and implication for chaos in discrete nonlinear dynamical system. Chaos Solitons Fractals, 2003, 18: 775-783 CrossRef Google Scholar

[7] Abed F H, Wang H O. Stabilization of period-doubling bifurcation and implications for chaos. Phys D, 1994, 70: 154-164 CrossRef Google Scholar

[8] Chen G R, Liu S T. On spatial periodic orbits and spatial chaos. Int J Biburcation Chaos, 2003, 4: 935-941. Google Scholar

[9] Liu S T, Chen G R. On spatial Lyapunov exponents and spatial chaos. Int J Biburcation Chaos, 2003, 13: 1163-1181 CrossRef Google Scholar

[10] Liu S T, Chen G R. Nonlinear feedback-controlled generalized synchronization of spatial chaos. Chaos Solitons Fractals, 2004, 22: 35-46 CrossRef Google Scholar

[11] Liu P. Linear generalized synchronization of spatial julia sets. Int J Biburcation Chaos, 2011, 21: 1281-1291 CrossRef Google Scholar

[12] Liu P, Liu S T. Control and synchronization of julia sets in coupled map lattice. Commun Nonlin Sci Numer Simulat, 2011, 16: 3344-3355 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号