logo

SCIENTIA SINICA Informationis, Volume 47, Issue 3: 275-287(2017) https://doi.org/10.1360/N112016-00073

Research status and prospect of GNSS anti-spoofing technology}{Research status and prospect of GNSS anti-spoofing technology

More info
  • ReceivedMar 30, 2016
  • AcceptedAug 18, 2016
  • PublishedJan 18, 2017

Abstract

With the increasing complexity of the electromagnetic environment and the increasing intensity of military confrontations, the potential security exposure in applications of satellite navigation has become a serious concern. Traditional GNSS anti-interference technology generally focuses on eliminating the jamming interference, while providing comparatively less attention to the elimination of spoofing interference. However, the potential risk induced by spoofing interference is no less than that caused by jamming interference. This paper first gives a broad overview of the research background on anti-spoofing technology, including the concept, theory, application cases, etc. Then it concludes and summarizes the research status of GNSS anti-spoofing technology in depth. Finally, it expounds emphatically some viewpoints on the prospect of GNSS anti-spoofing technology.


Funded by

国家重点基础研究发展计划(973)

(2012CB71992)

国家自然科学基金(41631072)

国家自然科学基金(41274013)

国家自然科学基金(41504029)


References

[1] Yang Y X. Progress, contribution and challenges of compass/Beidou satellite navigation system. Acta Geod Cartogr Sin, 2010, 39: 1-6 [杨元喜. 北斗卫星导航系统的进展, 贡献与挑战 . 测绘学报, 2010, 39: 1-6]. Google Scholar

[2] Tan S S, Zhou B, Guo S T, et al. Studies of compass navigation signals design. Sci Sin Phys, Mech & Astron, 2010, 40: 514-519 [谭述森, 周兵, 郭盛桃, 等. 我国全球卫星导航信号设计研究. 中国科学: 物理学\,\,力学\,\,天文学, 2010, 40: 514-519]. Google Scholar

[3] Liu J N, Liu H. Continuous operational reference system -- infrastructure of urban spatial data. Geom Inform Sci Wuhan Univ, 2003, 28: 259-264 [刘经南, 刘晖. 连续运行卫星定位服务系统---城市空间数据的基础设施. 武汉大学学报: 信息科学版, 2003, 28: 259-264]. Google Scholar

[4] Lv G N, Yuan L W, Yu Z Y. Challenges to development and socialization of GIS technology. Geo-Inf Sci, 2013, 15: 483-490 [闾国年, 袁林旺, 俞肇元. GIS 技术发展与社会化的困境与挑战. 地球信息科学学报, 2013, 15: 483-490]. Google Scholar

[5] Li W Q, Fu X, Wang W Y, et al. Application of BeiDou 2nd generation satellite navigation system in marine data buoy supervision and management. Shandong Sci, 2012, 25: 21-26 [李文庆, 付晓, 王文彦, 等. 北斗二代卫星导航系统在海洋资料浮标监控与管理中的应用. 山东科学, 2012, 25: 21-26]. Google Scholar

[6] Liang J B, Deng Y R, Guo L J, et al. Research and application of remote monitoring for power transmission and transformation facilities based on satellite internet of things. Electric Pow Construct, 2013, 34: 6-9 [梁俊斌, 邓雨荣, 郭丽娟, 等. 基于卫星物联网的输变电设施远程监控研究与应用. 电力建设, 2013, 34: 6-9]. Google Scholar

[7] Wang L, Zhang Q, Huang G W, et al. Experiment results and analysis of landslide monitoring by using GPS PPP technology. Rock Soil Mech, 2014, 35: 2118-2124 [王利, 张勤, 黄观文, 等. GPS PPP 技术用于滑坡监测的试验与结果分析. 岩土力学, 2014, 35: 2118-2124]. Google Scholar

[8] Humphreys T E, Ledvina B M, Psiaki M L, et al. Assessing the spoofing threat: development of a portable GPS civilian spoofer. In: Proceedings of the Institute of Navigation GNSS, Georgia, 2008. 2314-2325. Google Scholar

[9] Shepard D P, Humphreys T E, Fansler A A. Evaluation of the vulnerability of phasor measurement units to GPS spoofing attacks. Int J Crit Infrastruct Prot, 2012, 5: 146-153 CrossRef Google Scholar

[10] Psiaki M L, Humphreys T E. GNSS spoofing and detection. Proc IEEE, 2016, 104: 1258-1270 CrossRef Google Scholar

[11] Seo S H, Lee B H, Im S H, et al. Effect of spoofing on unmanned aerial vehicle using counterfeited GPS signal. J Posit Nav Tim, 2015, 4: 57-65. Google Scholar

[12] Baziar A R, Moazedi M, Mosavi M R. Analysis of single frequency GPS receiver under delay and combining spoofing algorithm. Wir Pers Commun, 2015, 83: 1955-1970 CrossRef Google Scholar

[13] Volpe J. Vulnerability Assessment of the Transportation Infrastructure Relying on the Global Positioning System: Final Report. National Transportation Systems Center. 2001. Google Scholar

[14] Scott L. Anti-spoofing & authenticated signal architectures for civil navigation systems. In: Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), Oregon, 2003. 1543-1552. Google Scholar

[15] Wesson K D, Rothlisberger M P, Humphreys T E. A proposed navigation message authentication implementation for civil GPS anti-spoofing. In: Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation, Oregon, 2011. 20-23. Google Scholar

[16] Wesson K D, Rothlisberger M P, Humphreys T. Practical cryptographic civil GPS signal authentication. Navigation, 2012, 59: 177-193. Google Scholar

[17] Wesson K D, Shepard D, Humphreys T. Straight talk on anti-spoofing. GPS World, 2012, 23: 32-39. Google Scholar

[18] Kerns A J, Wesson K D, Humphreys T. A blueprint for civil GPS navigation message authentication. In: Proceedings of Position, Location and Navigation Symposium-PLANS, California, 2014. 262-269. Google Scholar

[19] Kuhn M G. An Asymmetric Security Mechanism for Navigation Signals. Heidelberg: Springer-Verlag, 2005: 239-252. Google Scholar

[20] Psiaki M L, O'Hanlon B W, Bhatti J, et al. GPS spoofing detection via dual-receiver correlation of military signals. IEEE Trans Aero Elec Sys, 2013, 49: 2250-2267 CrossRef Google Scholar

[21] O'Hanlon B W, Psiaki M L, Humphreys T E, et al. Real-time spoofing detection in a narrow-band civil GPS receiver. In: Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation, Oregon, 2010: 21-24. Google Scholar

[22] O'Hanlon B W, Psiaki M L, Humphreys T E, et al. Real-time spoofing detection using correlation between two civil GPS receiver. In: Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation, Tennessee, 2012: 3584-3590. Google Scholar

[23] O'Hanlon B W, Psiaki M L, Bhatti J A, et al. Real-time GPS spoofing detection via correlation of encrypted signals. Navigation, 2013, 60: 267-278 CrossRef Google Scholar

[24] Dehghanian V, Nielsen J, Lachapelle G. GNSS spoofing detection based on signal power measurements: statistical analysis. Int J Nav Observ, 2012: 313527. Google Scholar

[25] Dehghanian V, Nielsen J, Lachapelle G. GNSS spoofing detection based on receiver C/N0 estimates. In: Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation, Tennessee, 2012: 2878-2884. Google Scholar

[26] Jafarnia-Jahromi A, Broumandan A, Nielsen J, et al. GPS spoofer countermeasure effectiveness based on signal strength, noise power, and C/N0 measurements. Int J Satell Commun Network, 2012, 30: 181-191 CrossRef Google Scholar

[27] Akos D M. Who's afraid of the spoofer? GPS/GNSS spoofing detection via automatic gain control (AGC). Navigation, 2012, 59: 281-290. Google Scholar

[28] Jafarnia-Jahromi A, Daneshmand S, Broumandan A, et al. PVT solution authentication based on monitoring the clock state for a moving GNSS receiver. In: Proceedings of the European Navigation Conference, Vienna, 2013. 1-11. Google Scholar

[29] Broumandan A, Jafarnia-Jahromi A, Dehghanian V, et al. GNSS spoofing detection in handheld receivers based on signal spatial correlation. In: Proceedings of the Position Location and Navigation Symposium, South Carolina, 2012. 479-487. Google Scholar

[30] Xie G. Principles of GPS and Receiver Design. Beijing: Publishing House of Electronics Industry, 2009. 321-322 [谢钢. GPS 原理与接收机设计. 北京: 电子工业出版社, 2009. 321-322]. Google Scholar

[31] Jafarnia-Jahromi A, Lin T, Broumandan A, et al. Detection and mitigation of spoofing attacks on a vector-based tracking GPS receiver. In: Proceedings of the 2012 International Technical Meeting of the Institute of Navigation, California, 2012. 790-800. Google Scholar

[32] Psiaki M L, Powell S P, O'Hanlon B W. GNSS spoofing detection: correlating carrier phase with rapid antenna motion. GPS World, 2013, 24: 53-58. Google Scholar

[33] Psiaki M L, O'Hanlon B W, Powell S P, et al. GNSS spoofing detection using two-antenna differential carrier phase. In: Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation, Florida, 2014: 2776-2800. Google Scholar

[34] Lim S, Lim D W, Chun S, et al. Design and performance evaluation of GPS spoofing signal detection algorithm at RF spoofing simulation environment. J Position Nav Tim, 2015, 4: 173-180 CrossRef Google Scholar

[35] Bardout Y. Authentication of GNSS position: an assessment of spoofing detection methods. In: Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation, Oregon, 2011. 436-446. Google Scholar

[36] Hwang P Y, McGraw G. Receiver Autonomous Signal Authentication (RASA) based on clock stability analysis.\linebreak In: Proceedings of Position, Location and Navigation Symposium-PLANS, California, 2014. 270-281. Google Scholar

[37] Khanafseh S, Roshan N, Langel S, et al. GPS spoofing detection using RAIM with INS coupling. In: Proceedings of Position, Location and Navigation Symposium-PLANS, California, 2014. 1232-1239. Google Scholar

[38] Lee J, Kwon D, An D, et al. GPS spoofing detection using accelerometers and performance analysis with probability of detection. Int J Contr Autom Syst, 2015, 13: 951-959 CrossRef Google Scholar

[39] Yang J S, Zeng F L, Sheng H, et al. A jamming system through section mapping for GPS navigation. Acta Elec Sinic, 2005, 33: 1036-1038 [杨景曙, 曾芳玲, 盛琥, 等. 通过区域映射实现诱导的 GPS 干扰系统. 电子学报, 2005, 33: 1036-1038]. Google Scholar

[40] Zhang S, Yang J S, Pan G F, et al. GPS inducing jamming system through a single transmitter. Modern Radar, 2010, 32: 19-26 [张颂, 杨景曙, 潘高峰, 等. 通过单站转发实现诱导的GPS干扰系统. 现代雷达, 2010, 32: 19-26]. Google Scholar

[41] Yan Z J, Wu D W, Liu H B, et al. Analysis of time-delay in GPS repeater deception jamming. J Air Forc Eng Univ (Natural Science Edition), 2013, 14: 67-70 [闫占杰, 吴德伟, 刘海波, 等. GPS转发欺骗式干扰时延分析. 空军工程大学学报(自然科学版), 2013, 14: 67-70]. Google Scholar

[42] Zhang H S, Gao G G, Kou L, et al. Deceptive jamming technology of GPS based on the track induction method. J Project Rock Miss Guid, 2013, 33: 149-152 [张会锁, 高关根, 寇磊, 等. 利用轨迹诱导的欺骗式 GPS 干扰技术研究. 弹箭与制导学报, 2013, 33: 149-152]. Google Scholar

[43] Zhou X, Li G X, Cai D B, et al. GNSS anti-spoofing techniques: review and prospect. In: Proceedings of China Satellite Navigation Conference, Wuhan, 2013 [周轩, 李广侠, 蔡锭波, 等. 卫星导航系统反欺骗技术: 回顾与展望. 第四届中国卫星导航学术年会, 武汉, 2013]. Google Scholar

[44] Lv H L, Zhai J Y, Wang W. The spoofing threat and anti-spoofing measurements analysis for satellite navigation.\linebreak In: Proceedings of China Satellite Navigation Conference, Wuhan, 2013 [吕红丽, 翟建勇, 王伟. 卫导接收机欺骗干扰威胁和反欺骗措施分析. 第四届中国卫星导航学术年会, 武汉, 2013]. Google Scholar

[45] Li S H, Liu Y, Zhang H S, et al. Inertial measurements aided GNSS spoofing detection technique. J Chin Inert Tech, 2013, 21: 336-340 [李四海, 刘洋, 张会锁, 等. 惯性信息辅助的卫星导航欺骗检测技术. 中国惯性技术学报, 2013, 21: 336-340]. Google Scholar

[46] Sun M H, Wang H Q, Zhang H, et al. Performance analysis of maximum likelihood detection for satellite navigation receiver anti-spoofing. Sci Sin Inform, 2014, 44: 1048-1058 [孙闽红, 王海泉, 张茴, 等. 卫星导航接收机抗欺骗干扰极大似然检测性能分析. 中国科学: 信息科学, 2014, 44: 1048-1058]. Google Scholar

[47] Tang C, Sun X Y, Ji Y F. Research on GNSS civil navigation message encryption and authentication technology. Comput Simul, 2015, 32: 86-90 [唐超, 孙希延, 纪元法, 等. GNSS 民用导航电文加密认证技术研究. 计算机仿真, 2015, 32: 86-90]. Google Scholar

[48] Liang H, Work D B, Gao G X. Cooperative GNSS authentication: reliability from unreliable peers. Inside GNSS, 2013, 8: 70-75. Google Scholar

[49] Liang H, Work D B, Gao G X. GPS signal authentication from cooperative peers. IEEE Trans Intell Transp Syst, 2014, 16: 1-12. Google Scholar

[50] Huang L, Tang X M, Wang F X. Anti-spoofing techniques for GNSS receiver. Geom Inform Sci Wuhan Univ, 2011, 36: 1344-1347 [黄龙, 唐小妹, 王飞雪. 卫星导航接收机抗欺骗干扰方法研究. 武汉大学学报: 信息科学版, 2011, 36: 1344-1347]. Google Scholar

[51] Huang L, Lv Z C, Wang F X. Spoofing pattern research on GNSS receivers. J Astron, 2012, 33: 884-890 [黄龙, 吕志成, 王飞雪. 针对卫星导航接收机的欺骗干扰研究. 宇航学报, 2012, 33: 884-890]. Google Scholar

[52] Huang L, Gong H, Zhu X W, et al. Research of re-radiating spoofing technique to GNSS timing receiver. J Nation Univ Def Tech, 2013, 35: 93-96 [黄龙, 龚航, 朱祥维, 等. 针对 GNSS 授时接收机的转发式欺骗干扰技术研究. 国防科技大学学报, 2013, 35: 93-96]. Google Scholar

[53] Zhu X W, Wu Y W, Gong H, et al. GNSS timing receiver toughen technique in complicated jamming environments. J Nation Univ Def Tech, 2015, 37: 1-9 [朱祥维, 伍贻威, 龚航, 等. 复杂干扰环境下的卫星授时接收机加固技术. 国防科技大学学报, 2015, 37: 1-9]. Google Scholar

[54] Hu Y F, Cao K J, Li B, et al. Repeater deception jamming research on clock error compensation algorithm. \linebreak In: Proceedings of China Satellite Navigation Conference, Nanjing, 2014 [胡彦逢, 曹可劲, 李豹, 朱银兵. 转发式欺骗干扰钟差补偿算法研究. 第五届中国卫星导航学术年会, 南京, 2014]. Google Scholar

[55] Hu Y F. Research on GNSS spoofing technology. Dissertation for Master Degree. Wuhan: Naval University of Engineering, 2014 [胡彦逢. 卫星导航欺骗式干扰技术研究. 硕士学位论文. 武汉: 海军工程大学, 2014]. Google Scholar

[56] Wang H Y, Yao Z C, Fan Z L, et al. A negative time-delay correction method for repeater deception jamming signal. Telecommun Eng, 2015, 55: 1255-1259 [王海洋, 姚志成, 范志良, 等. 一种针对转发式欺骗干扰信号的负延时补偿方法. 电讯技术, 2015, 55: 1255-1259]. Google Scholar

[57] Yao L H, Geng Z L, Nie J W, et al. The characteristics of single antenna repeater jamming coordinates mappings. GNSS World Chi, 2015, 40: 19-24 [姚李昊, 耿正霖, 苏映雪, 等. 对单天线转发式欺骗干扰坐标系映射特性分析. 全球定位系统, 2015, 40: 19-24]. Google Scholar

[58] Hu Y F, Cao K J, Bian S F, et al. GNSS spoofing detection algorithm based on clock frequency drift monitoring. Syst Eng Elect, 2015, 37: 1629-1632 [胡彦逢, 曹可劲, 边少锋, 等. 基于时钟频漂检验的卫星导航欺骗识别算法. 系统工程与电子技术, 2015, 37: 1629-1632]. Google Scholar

[59] Hu Y F, Bian S F, Cao K J. Spoofing power control strategy for GNSS receiver. J Chi Inertial Tech, 2015, 23: 207-210 [胡彦逢, 边少锋, 曹可劲, 等. GNSS 接收机欺骗干扰功率控制策略. 中国惯性技术学报, 2015, 23: 207-210]. Google Scholar

[60] Yao L H, Chen F Q, Nie J W, et al. The spoofing detection method based on single node doppler velocimetry. GNSS World Chi, 2015, 40: 6-10 [姚李昊, 陈飞强, 聂俊伟, 等. 基于多普勒测速的单节点欺骗检测方法研究. 全球定位系统, 2015, 40: 6-10]. Google Scholar

[61] Zhao L W, Miao Z M, Zhang B J, et al. A novel spoofing attack detection method in satellite navigation tracking phase. J Astron, 2015, 36: 1172-1177 [赵陆文, 缪志敏, 张北江, 等. 一种新的卫星导航跟踪段欺骗攻击检测方法. 宇航学报, 2015, 36: 1172-1177]. Google Scholar

[62] Li Y N, Yu B G, Gan X L. Research on anti-spoofing technology for navigation satellite receive. Rad Eng Chi, 2016, 46: 49-53 [李雅宁, 蔚保国, 甘兴利. 卫星导航接收端反电子欺骗技术比较研究. 无线电工程, 2016, 46: 49-53]. Google Scholar

[63] Peng X K. Spoofing jamming detection technology research on Beidou navigation receiver. Dissertation for Master Degree. Wuhan: Naval University of Engineering, 2015 [彭煊坤. 北斗导航接收机欺骗式干扰检测技术研究. 硕士学位论文. 武汉: 海军工程大学, 2015]. Google Scholar

[64] Li S L. Feasibility research on Beidou spoofing jamming technology under the condition of navigation countermeasures. Dissertation for Master Degree. Wuhan: Naval University of Engineering, 2016 [李松林. 导航对抗条件下北斗欺骗干扰可行性研究. 硕士学位论文. 武汉: 海军工程大学, 2016]. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号