logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 10 : 1421-1441(2016) https://doi.org/10.1360/N112016-00075

The design principle for the programming of real space parallel adaptive calculations for electronic structure

More info
  • ReceivedMar 28, 2016
  • AcceptedAug 15, 2016
  • PublishedOct 25, 2016

Abstract

First principles calculations are the primary tool in investigating the micro-structure of matter. However, there exists little mature code based on real space discretizations. Through long-term investigations regarding the PHG platform, our group have developed a first principles real space parallel adaptive computation code, named RealSPACES (real space parallel adaptive calculation of electronic structure), whose calculations can be highly accurate, and which exhibits very good scalability. In this paper, we systematically but briefly introduce the main principles and algorithms in the design and implementation of RealSPACES.


Funded by

国家自然科学基金(11321061)

国家自然科学基金(91330202)

国家重点基础研究发展计划(973计划)

(2011CB309703)


References

[1] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136: B864-B871 CrossRef Google Scholar

[2] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev A, 1965, 140: 1133-1138 CrossRef Google Scholar

[3] Zhou A. Some open mathematical problems in electronic structure models and calculations. Sci China Math, 2015, 45: 929-938 [周爱辉. 电子结构模型与计算的若干数学问题. 中国科学: 数学, 2015, 45: 929-938]. Google Scholar

[4] Beck T L. Real-space mesh techniques in density-function theory. Rev Mod Phys, 2000, 72: 1041-1080 CrossRef Google Scholar

[5] Dai X, Zhou A. Finite element methods for electronic structure calculations. Sci China Chem, 2015, 45: 800-811 [戴小英, 周爱辉. 电子结构计算的有限元方法. 中国科学: 化学, 2015, 45: 800-811]. Google Scholar

[6] Torsti T, Eirola T, Enkovaara J, et al. Three real-space discretization techniques in electronic structure calculations. Phys Stat Sol, 2006, B243: 1016-1053. Google Scholar

[7] Chen H. Finite dimension approximations in density functional theory. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2010 [陈华杰. 密度泛函理论的有限维逼近. 博士学位论文. 北京: 中国科学院研究生院, 2010]. Google Scholar

[8] Dai X. Adaptive and localization based finite element discretizations for the first-principles electronic structure calculation. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2008 [戴小英. 第一原理电子结构计算的有限元自适应及局部算法研究. 博士学位论文. 北京: 中国科学院研究生院, 2008]. Google Scholar

[9] Fang J. Algorithm study for real-space first-principles calculations. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2013 [方俊. 第一原理计算的若干实空间算法研究. 博士学位论文. 北京: 中国科学院研究生院, 2013]. Google Scholar

[10] Gao X. Hexahedral finite element methods for the first-principles electronic structure calculations. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2009 [高兴誉. 第一原理计算的若干实空间算法研究. 博士学位论文. 北京: 中国科学院研究生院, 2009]. Google Scholar

[11] He L. Study of the first-principles electronic structure calculations: numerical analysis and numerical simulation. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2012 [何连花. 第一原理电子结构计算研究: 数值分析与数值模拟. 博士学位论文. 北京: 中国科学院研究生院, 2012]. Google Scholar

[12] Liu F. The first-principles studies: two-scale finite element discretizations and the calculations of ideal strength. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2006 [刘芳. 第一原理计算研究: 双尺度有限元组合离散与理想强度分析. 博士学位论文. 北京: 中国科学院研究生院, 2006]. Google Scholar

[13] Shen L. Parallel adaptive finite element algorithms for electronic structure computing based on density functional theory. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2005 [沈丽华. 基于密度泛函理论的电子结构有限元并行自适应算法. 博士学位论文. 北京: 中国科学院研究生院, 2005]. Google Scholar

[14] Yang Z. Finite volume discretization based first-principles electronic structure calculations. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2011 [杨章. 基于有限体积离散的第一原理电子结构计算. 博士学位论文. 北京: 中国科学院研究生院, 2011]. Google Scholar

[15] Zhang D. The application of finite element method in electronic structure calculations. Dissertation for Ph.D. Degree. Shanghai: Fudan University, 2007 [张笛儿. 有限元方法在电子结构计算中的应用. 上海: 复旦大学, 2007]. Google Scholar

[16] Zhang X. Algorithm study for real-space ground and excited states in first-principles calculations. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2015 [张昕. 第一原理基态与激发态实空间算法和模型研究. 博士学位论文. 北京: 中国科学院大学, 2015]. Google Scholar

[17] Zhu J. First-principles calculations based on mean-field model and strongly correlated theory. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2014 [朱金伟. 基于平均场模型与强关联理论的第一原理计算. 博士学位论文. 北京: 中国科学院大学, 2014]. Google Scholar

[18] Dirac P A M. The Principles of Quantum Mechanics. 4th ed. Oxford: Oxford University Press, 1988. Google Scholar

[19] Fermi E. Un metodo statistics per la determinazione di alcune proprieta dell'atomoi. Rend Accad Lincei, 1927, 6: 602-607. Google Scholar

[20] Fermi E. A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements. Zeit Fur Physik, 1928, 48: 73-79 CrossRef Google Scholar

[21] Thomas L H. The calculation of atomic fields. Proc Cambridge Phil Soc, 1927, 23: 542-548 CrossRef Google Scholar

[22] Zhou A. Hohenberg-Kohn theorem for Coulomb type systems and its generalization. J Math Chem, 2012, 50: 2746-2754 CrossRef Google Scholar

[23] Zhou A. Mathematical Model of Electronic Structure. Lecture Notes for Graduate University of Chinese Academy of Sciences, 2010 [周爱辉. 电子结构的数学模型. 中国科学院研究生院讲义, 2010]. Google Scholar

[24] Agmon S. Lectures on the Exponential Decay of Solutions of Second-Order Elliptic Operators. Princeton: Princeton University Press, 1981. Google Scholar

[25] G{å}rding L. On the essential spectrum of Schrödinger operators. J Funct Anal, 1983, 52: 1-10 CrossRef Google Scholar

[26] Simon B. Schrödinger operators in the twentieth century. J Math Phys, 2000, 41: 3523-3555 CrossRef Google Scholar

[27] Zhang X, Zhou A. A Singularity-based eigenfunction decomposition for Kohn-Sham quations. Sci Sin Math, 2016, 59: 1623-1634. Google Scholar

[28] Adams R A. Sobolev Spaces. New York: Academic Press, 1975. Google Scholar

[29] Wang L H, Xu X J. The Mathematical Theory of Finite Element Methods. Beijing: Science Press, 2004 [王烈衡, 许学军. 有限元方法的数学基础. 北京: 科学出版社, 2004]. Google Scholar

[30] Almbladh C O, von Barth U. Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. Phys Rev B, 1985, 31: 3231-3244. Google Scholar

[31] Fattebert J L, Nardelli M B. Finite Difference Methods in Ab Initio Electronic Structure and Quantum Transport Calculations of Nanostructures. In: Handbook of Numerical Analysis. Amsterdam: Elsevier, 2003. Google Scholar

[32] Fattebert J L, Hornung R D, Wissink A M. Finite element approach for density functional theory calculations on locally-refined meshes. J Comput Phys, 2007, 223: 759-773 CrossRef Google Scholar

[33] Martin R M. Electronic Structure: Basic Theory and Practical Methods. Cambridge: Cambridge University Press, 2004. Google Scholar

[34] Xie X D, Lu D. Energy Band Theory of Solids. Shanghai: Fudan Univetsity Press, 1998 [谢希德, 陆栋. 固体能带理论. 上海: 复旦大学出版设, 1998]. Google Scholar

[35] He L, Liu F, Hautier G, et al. Accuracy of generalized gradient approximation functionals for density functional perturbation theory calculations. Phys Rev B, 2014, 89: 064305-064320 CrossRef Google Scholar

[36] Slater J C. A simpification of the Hartree-Fock method. Phys Rev, 1951, 81: 385-390 CrossRef Google Scholar

[37] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method. Phys Rev Lett, 1980, 45: 566-569 CrossRef Google Scholar

[38] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45: 13244-13249 CrossRef Google Scholar

[39] Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron. Phys Rev B, 1981, 23: 5048-5079 CrossRef Google Scholar

[40] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys, 1980, 58: 1200-1211 CrossRef Google Scholar

[41] Hamann D R, Schlüter M, Chiang C. Norm-conserving pseudopotentials. Phys Rev Lett, 1979, 43: 1494-1497 CrossRef Google Scholar

[42] Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations. Phys Rev B, 1991, 43: 1993-2006 CrossRef Google Scholar

[43] Blöchl P E. Generalized separable potentials for electronic-structure calculations. Phys Rev B, 1990, 41: 5414-5416 CrossRef Google Scholar

[44] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41: 7892-7895 CrossRef Google Scholar

[45] Kleinman L, Bylander D M. Efficacious form for model pseudopotentials. Phys Rev Lett, 1982, 48: 1425-1428 CrossRef Google Scholar

[46] Johnson D D. Modified Broyden's method for accelerating convergence in self-consistent calculations. Phys Rev B, 1988, 38: 12807-12813 CrossRef Google Scholar

[47] Anderson D G. Iterative procedures for nonlinear integral equations. J Assoc Comput Mach, 1965, 12: 547-560 CrossRef Google Scholar

[48] Pulay P. Convergence acceleration of iterative sequences. the case of scf iteration. Chem Phys Lett, 1980, 73: 393-398. Google Scholar

[49] Pulay P. Improved SCF convergence acceleration. J Comput Chem, 1982, 3: 556-560 CrossRef Google Scholar

[50] Yuan Y X, Sun W Y. Optimization Theory and Methods. Beijing: Science Press, 1997 [袁亚湘, 孙文瑜. 最优化理论与方法. 北京: 科学出版社, 1997]. Google Scholar

[51] Singh D, Krakauer H, Wang C S. Accelerating the convergence of self-consistent linearized augmented-plane-wave calculations. Phys Rev B, 1986, 34: 8391-8393 CrossRef Google Scholar

[52] Srivastava G P. Broyden's method for self-consistent field convergence acceleration. J Phys A, 1984, 17: 317-321 CrossRef Google Scholar

[53] Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. Society for Industrial and Applied Mathematics, 2003. Google Scholar

[54] Brandt A. Multilevel adaptative solutions to boundary-value problems. Math Comput, 1977, 31: 333-390 CrossRef Google Scholar

[55] Strakhovskaya L. An iterative method for evaluating the first eigenvalue of an elliptic operator. USSR Comput Math Math Phys, 1977, 17: 88-101 CrossRef Google Scholar

[56] Saad Y. Numerical Methods for Large Eigenvalue Problems. New York: Halstead Press, 1992. Google Scholar

[57] Calvetti D, Reichel L, Sorensen D C. An implicitly restarted Lanczos method for large symmetric eigenvalue problems. Electron Trans Numer Anal, 1994, 2: 1-21. Google Scholar

[58] Knyazev A V. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J Sci Comput, 2001, 23: 517-541 CrossRef Google Scholar

[59] Dai X, Gao X, Zhou A. An introduction to the Davidson type method and its implementation. J Numer Methods Comput Appl, 2006, 27: 218-240 [戴小英, 高兴誉, 周爱辉. 特征值问题的Davidson型方法及其实现技术. 数值计算与计算机应用, 2006, 27: 218-240]. Google Scholar

[60] Sleijpen G L G, van der Vorst H A. A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J Matrix Anal Appl, 1996, 17: 401-425 CrossRef Google Scholar

[61] Chen H, Dai X, Gong X, et al. Adaptive finite element approximations for {K}ohn-{S}ham models. Multiscale Model Simul, 2014, 12: 1828-1869 CrossRef Google Scholar

[62] Chen H, Gong X, He L, et al. Adaptive finite element approximations for a class of nonlinear eigenvalue problems in quantum physics. Adv Appl Math Mech, 2011, 3: 493-518 CrossRef Google Scholar

[63] Fang J, Gao X, Zhou A. A Kohn-Sham equation solver based on hexahedral finite elements. J Comput Phys, 2012, 231: 3166-3180 CrossRef Google Scholar

[64] Shen L, Zhou A. A defect correction scheme for finite element eigenvalues with applications to quantum chemistry. SIAM J Sci Comput, 2006, 28: 321-338 CrossRef Google Scholar

[65] Zhang D, Shen L, Zhou A, et al. Finite element method for solving {K}ohn-{S}ham equations based on self-adaptive tetrahedral mesh. Phys Lett A, 2008, 372: 5071-5076 CrossRef Google Scholar

[66] Dai X, Gong X, Yang Z, et al. Finite volume discretizations for eigenvalue problems with applications to electronic structure calculations. Multiscale Model Simul, 2011, 9: 208-240 CrossRef Google Scholar

[67] Dai X, Yang Z, Zhou A. Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions. Sci China Ser A, 2008, 51: 1401-1414 CrossRef Google Scholar

[68] Fang J, Gao X, Zhou A. A symmetry-based decomposition approach to eigenvalue problems. J Sci Comput, 2013, 57: 638-669 CrossRef Google Scholar

[69] Dai X, Gong X, Zhou A, et al. A parallel orbital-updating approach for electronic structure calculations. arXiv1405.0260. 2014. Google Scholar

[70] Dai X, Liu Z, Zhou A. A parallel orbital-updating based optimization method for electronic structure calculations. arXiv:1510.07230. 2015. Google Scholar

[71] Dai X, Liu Z, Zhou A. A conjugate gradient optimization method for electronic structure calculations. arXiv:1601.07676. 2016. Google Scholar

[72] Zhang X, Zhu J, Wen Z, et al. Gradient type optimization methods for electronic structure calculations. SIAM J Sci Comput, 2014, 36: C265-C289 CrossRef Google Scholar

[73] Dai X, Shen L, Zhou A. A local computational scheme for higher order finite element eigenvalue approximations. Inter J Numer Anal Model, 2008, 5: 570-589. Google Scholar

[74] Dai X, Zhou A. Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J Numer Anal, 2008, 46: 295-324 CrossRef Google Scholar

[75] Chen H, Liu F, Zhou A. A two-scale higher order finite element discretization for Schrödinger equations. J Comput Math, 2009, 27: 315-337. Google Scholar

[76] Gao X, Liu F, Zhou A. Three-scale finite element eigenvalue discretizations. BIT Numer Math, 2008, 48: 533-562 CrossRef Google Scholar

[77] Cascon J M, Kreuzer C, Nochetto R H, et al. Quasi-optimal convergence rate for an adaptive finite element method. SIAM J Numer Anal, 2008, 46: 2524-2550 CrossRef Google Scholar

[78] Chen H, He L, Zhou A. Finite element approximations of nonlinear eigenvalue problems in quantum physics. Comput Methods Appl Mech Engrg, 2011, 200: 1846-1865 CrossRef Google Scholar

[79] Dai X, Xu J, Zhou A. Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer Math, 2008, 110: 313-355 CrossRef Google Scholar

[80] D{\" o}rfler W. A convergent adaptive algorithm for Poisson's equation. SIAM J Numer Anal, 1996, 33: 1106-1124 CrossRef Google Scholar

[81] Garau E M, Morin P. Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J Numer Anal, 2011, 31: 914-946 CrossRef Google Scholar

[82] Garau E M, Morin P, Zuppa C. Convergence of adaptive finite element methods for eigenvalue problems. M$^3$AS, 2009, 19: 721-747. Google Scholar

[83] Mao D, Shen L, Zhou A. Adaptive finite algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv Comput Math, 2006, 25: 135-160 CrossRef Google Scholar

[84] Yan N, Zhou A. Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput Methods Appl Mech Engrg, 2001, 190: 4289-4299 CrossRef Google Scholar

[85] Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery and a posteriori error estimates. Internat. J Numer Methods Engrg, 1992, 33: 1331-1382 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号