SCIENTIA SINICA Informationis, Volume 46, Issue 8: 1108-1135(2016) https://doi.org/10.1360/N112016-00083

Micro/Nano-scale integrated circuits and new emerging hybrid integration techniques

More info
  • ReceivedApr 5, 2016
  • AcceptedMay 31, 2016


As Moore's law advances, the integrated circuit (IC) industry is facing both unprecedented technical challenges and bottlenecks and good opportunities for development. This paper focuses on the innovative micro/nano-scale IC industry and the new hybrid integration technology. To this end, an extensive and profound survey of the current research status and trends in low power micro/nano-scale devices and circuits, nano-scale single-chip systems, MEMS/NEMS, and hybrid integration techniques is presented. In addition, a comprehensive roadmap for theoretical innovations and technical development of post-Moore era IC technology is given and a new roadmap for emerging application-driven IC products outlined.


[1] Cheng K, Khakifirooz A, Kulkarni P, et al. Extremely thin SOI (ETSOI) CMOS with record low variability for low power system-on-chip applications. In: Proceedings of IEEE International Electron Devices Meeting, Baltimore, 2009. 1-4. Google Scholar

[2] Auth C, Allen C, Blattner A, et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2012. 131-132. Google Scholar

[3] Liu Q, Yagishita A, Loubet N, et al. Ultra-thin-body and BOX (UTBB) fully depleted (FD) device integration for 22nm node and beyond. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2010. 61-62. Google Scholar

[4] Xu X, Wang R, Huang R, et al. High-performance BOI FinFETs based on bulk-silicon substrate. IEEE Trans Electron Devices, 2008, 55: 3246-3250 CrossRef Google Scholar

[5] Suk S D, Lee S-Y, Kim S-M, et al. High performance 5nm radius twin silicon nanowire MOSFET(TSNWFET): fabrication on bulk Si wafer, characteristics, and reliability. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2005. 717-720. Google Scholar

[6] Bangsaruntip S, Cohen G M, Majumdar A, et al. High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling. In: Proceedings of IEEE International Electron Devices Meeting, Baltimore, 2009. 1-4. Google Scholar

[7] Tian Y, Huang R, Wang Y, et al. New self-aligned silicon nanowire transistors on bulk substrate fabricated by epi-free compatible CMOS technology: process integration, experimental characterization of carrier transport and low frequency noise. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2007. 895-898. Google Scholar

[8] Takagi S, Takenaka M. Advanced CMOS technologies using III-V/Ge channels. Symp. In: Proceedings of International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, 2011. 1-2. Google Scholar

[9] Li Z, An X, Yun Q, et al. Low specific contact resistivity to n-Ge and well-behaved Ge n+/p diode achieved by multiple implantation and multiple annealing technique. Electron Device Lett, 2013, 34: 1097-1099 CrossRef Google Scholar

[10] Liu P Q, Li M, An X. N+/P shallow junction with high dopant activation and low contact resistivity fabricated by solid phase epitaxy method for Ge technology. In: Proceedings of Silicon Nanotechnology Workshop, Kyoto, 2015. 1-2. Google Scholar

[11] Li Z, An X, Yun Q, et al. Tuning schottky barrier height in metal/n-type germanium by inserting an ultrathin yttrium oxide film. ECS Solid State Lett, 2012, 1: 33-34. Google Scholar

[12] Li Z, An X, Li M, et al. Low electron schottky barrier height of NiGe/Ge achieved by ion implantation after germanidation technique. Electron Device Lett, 2012, 33: 1687-1689 CrossRef Google Scholar

[13] Yokoyama M, Iida R, Kim S H, et al. Extremely-thin-body InGaAs- on-insulator MOSFETs on Si fabricated by direct wafer bonding. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2010. 1-4. Google Scholar

[14] Goh K-H, Tan K-H, Yadav S, et al. Gate-all-around CMOS (InAs n-FET and GaSb p-FET) based on vertically-stacked nanowires on a Si platform, enabled by extremely-thin buffer layer technology and common gate stack and contact modules. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2015. 1-4. Google Scholar

[15] Chung C-T, Chen C-W, Lin J-C, et al. First experimental Ge CMOS FinFETs directly on SOI substrate. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2012. 1-4. Google Scholar

[16] Schwierz F. Graphene transistor. Nat Nanotech, 2010, 5: 487-496 CrossRef Google Scholar

[17] Schwierz F, Pezoldt J, Granzner R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015, 7: 8261-8283 CrossRef Google Scholar

[18] Schwierz F. Graphene transistors: status, prospects, and problems. Proc IEEE, 2013, 101: 1567-1584 CrossRef Google Scholar

[19] Salahuddin S, Datta S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett, 2008, 8: 405-410 CrossRef Google Scholar

[20] Akarvardar K, Elata D, Parsa R, et al. Design considerations for complementary nanoelectromechanical logic gates. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2007. 299-302. Google Scholar

[21] Choi W Y, Song J Y, Choi B Y, et al. 80nm self-aligned complementary I-MOS using double sidewall spacer and elevated drain structure and its applicability to amplifiers with high linearity. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2004. 203-206. Google Scholar

[22] Lonescu A M, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 2011, 479: 329-337 CrossRef Google Scholar

[23] Zhang L, Huang J, Chan M. Steep slope devices and TFETs. In: Tunneling Field Effect Transistor Technology. Berlin: Springer, 2016. 1-31. Google Scholar

[24] Huang Q Q, Zhan Z, Huang R, et al. Self-depleted T-gate schottky barrier tunneling FET with low average subthreshold slope and high ION/IOFF by gate configuration and barrier modulation. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2011. 382-385. Google Scholar

[25] Huang Q Q, Huang R, Wu C L, et al. Comprehensive performance re- assessment of TFETs with a novel design by gate and source engineering from device/circuit perspective. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2014. 335-338. Google Scholar

[26] Borghetti J, Snider G S, Kuekes P L, et al. Memristive switches enable stateful logic operations via material implication. Nat Lett, 2010, 464: 873-876 CrossRef Google Scholar

[27] Yang J J, Strukov D B, Stewart D R. Memristive devices for computing. Nat Nanotech, 2013, 8: 13-24. Google Scholar

[28] Kuzum D, Yu S, Wong H-S P. Synaptic electronics: materials, devices and applications. Nanotechnology, 2013, 24: 382001-24 CrossRef Google Scholar

[29] Bandyopadhyay S, Cahay M. Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits. Nanotechnology, 2009, 20: 170-223. Google Scholar

[30] Morris D, Bromberg D, Zhu J-G, et al. mLogic: ultra-low voltage non- volatile logic circuits using STT-MTJ devices. In: Proceedings of the 49th Annual Design Automation Conference. New York: ACM, 2012. 486-491. Google Scholar

[31] Shoaran M, Tajalli A, Alioto M, et al. Analysis and characterization of variability in subthreshold source-coupled logic circuits. IEEE Trans Circ Syst I: Regular Papers, 2015, 63: 458-467. Google Scholar

[32] Jorgenson R D, Sorensen L, Leet D, et al. Ultralow-power operation in subthreshold regimes applying clockless logic. Proc IEEE, 2010, 98: 299-314 CrossRef Google Scholar

[33] Kaizerman A, Fisher S, Fish A. Subthreshold dual mode logic. IEEE Trans Very Large Scale Integration Syst, 2013, 21: 979-983 CrossRef Google Scholar

[34] Chanda M, Jain S, De S, et al. Implementation of Subthreshold Adiabatic Logic for Ultralow-Power Application. IEEE Trans Very Large Scale Integration Syst, 2015, 23: 278-2790. Google Scholar

[35] Vaddi R, Dasgupta S, Agarwal R P. Device and Circuit Co-Design Robustness Studies in the Subthreshold Logic for Ultralow-Power Applications for 32 nm CMOS. IEEE Trans Electron Dev, 2010, 57: 654-664 CrossRef Google Scholar

[36] Cardoso A J, de Carli L G, Galup-Montoro C, et al. Analysis of the Rectifier Circuit Valid Down to Its Low-Voltage Limit. IEEE Trans Circ Syst-I: Regular Papers, 2012, 59: 106-112 CrossRef Google Scholar

[37] Kim I-D, Cho W-W, Kim J-Y, et al. Design of Low-voltage High-current Rectifier with High-efficiency Output Side for Electrolytic Disinfection of Ballast Water. In: Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, 2010. 1652-1657. Google Scholar

[38] Dayal R, Parsa L. A new single stage AC-DC converter for low voltage electromagnetic energy harvesting. In: Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, 2010. 4447-4452. Google Scholar

[39] Lam Y H, Ki W H, Tsui C Y. Integrated low-loss CMOS active rectifier for wirelessly powered devices. IEEE Trans Circ Syst II: Expr Briefs, 2006, 53: 1378-1382 CrossRef Google Scholar

[40] Seeman M D, Sanders S R, Rabaey J M. An ultra-low-power power management IC for wireless sensor nodes. In: Proceedings of IEEE Custom Integrated Circuits Conference, San Jose, 2007. 567-570. Google Scholar

[41] Peters C, Handwerker J, Maurath D, et al. An ultra-low-voltage active rectifier for energy harvesting applications, circuits and systems (ISCAS). In: Proceedings of IEEE International Symposium on Circuits and Systems, Paris, 2010. 889-892. Google Scholar

[42] Peters C, Handwerker J, Maurath D, et al. A sub-500 mV highly efficient active rectifier for energy harvesting applications. IEEE Trans Circ Syst I: Regular Papers, 2011, 58: 1542-1550 CrossRef Google Scholar

[43] Cheng S, Jin Y, Rao Y, et al. An active voltage doubling AC/DC converter for low-voltage energy harvesting applications. IEEE Trans Power Electron, 2011, 26: 2258-2265 CrossRef Google Scholar

[44] Hashemi S S, Sawan M, Savaria Y. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices. IEEE Trans Biomed Circ Syst, 2012, 6: 326-335 CrossRef Google Scholar

[45] Zou Y, Han J, Weng X, et al. An ultra-low power QRS complex detection algorithm based on down-sampling wavelet transform. Signal Process Lett, 2013, 20: 515-518 CrossRef Google Scholar

[46] Hyejung K, van Hoof C, Yazicioglu R F. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications. In: Proceedings of Engineering in Medicine and Biology Society, Boston, 2011. 2196-2199. Google Scholar

[47] Xu G, Han J, Zou Y, et al. A 1.5-D multi-channel EEG compression algorithm based on NLSPIHT. Signal Process Lett, 2015, 22: 1118-1122. Google Scholar

[48] Myers J, Savanth A, Howard D, et al. 8.1 an 80nW retention 11.7pJ/cycle active subthreshold ARM Cortex-M0+ subsystem in 65nm CMOS for WSN applications. In: Proceedings of Interantional Solid- State Circuits Conference (ISSCC), San Francisco, 2015. 1-3. Google Scholar

[49] Nose K, Hirabayashi M, Kawaguchi H, et al. VTH-hopping scheme to reduce subthreshold leakage for low-power processors. J Solid-State Circ, 2002, 37: 413-419 CrossRef Google Scholar

[50] Das S, Tokunaga C, Pant S, et al. RazorII: in situ error detection and correction for PVT and SER tolerance. J Solid-State Circ, 2009, 44: 32-48 CrossRef Google Scholar

[51] Kwon I, Kim S, Fick D, et al. Razor-lite: a light-weight register for error detection by observing virtual supply rails. J Solid-State Circ, 2014, 49: 2054-2066 CrossRef Google Scholar

[52] Makimoto T. The age of the digital nomad: impact of CMOS innovation. IEEE Solid-State Circ Mag, 2013, 5: 40-47 CrossRef Google Scholar

[53] Staszewski R, Staszewski R B, Jung T, et al. Software assisted digital RF processor (DRP$^{\rm TM}$) for single-chip GSM radio in 90 nm CMOS. J Solid-State Circ, 2010, 45: 276-288 CrossRef Google Scholar

[54] Deng W, Yang D S, Ueno T, et al. A fully synthesizable all-digital PLL with interpolative phase coupled oscillator, current-output DAC, and fine-resolution digital varactor using gated edge injection technique. J Solid-State Circ, 2015, 50: 68-80 CrossRef Google Scholar

[55] Yip M, Jin R, Nakajima H H, et al. A fully-implantable cochlear implant SoC with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation. J Solid-State Circ, 2015, 50: 214-229 CrossRef Google Scholar

[56] Li X, Tsui C-Y, Ki W-H. A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices. J Solid-State Circ, 2015, 50: 978-989. Google Scholar

[57] Bandyopadhyay S, Mercier P P, Lysaght A C, et al. A 1.1 nW energy- harvesting system with 544 pW quiescent power for next-generation implants. J Solid-State Circ, 2014, 49: 2812-2824. Google Scholar

[58] Chang N C-J, Hurst P J, Levy B C, et al. Background adaptive cancellation of digital switching noise in a pipelined analog-to-digital converter without noise sensors. J Solid-State Circ, 2014, 49: 1397-1407 CrossRef Google Scholar

[59] Narendra S G, Fujino L C, Smith K C. Through the looking glass? the 2015 edition: trends in solid-state circuits from ISSCC. J Solid-State Circ, 2015, 7: 14-24. Google Scholar

[60] Abidi A A. The path to the software-defined radio receiver. J Solid-State Circ, 2007, 42: 954-966 CrossRef Google Scholar

[61] Chen K-C, Chao C-H, Wu A-Y. Thermal-aware 3D network- on-chip (3D NoC) designs: routing algorithms and thermal managements. IEEE Circ Syst Mag, 2015, 15: 45-69 CrossRef Google Scholar

[62] Iyer S S, Kirihata T. Three-dimensional integration: a tutorial for designers. IEEE Solid-State Circ Mag, 2015, 7: 63-74 CrossRef Google Scholar

[63] Hamzaoglu F, Arslan U, Bisnik N, et al. A 1 Gb 2 GHz 128 GB/s bandwidth embedded DRAM in 22 nm tri-gate CMOS technology. J Solid-State Circ, 2015, 50: 150-157 CrossRef Google Scholar

[64] Chen Y-H, Cha W-M, Wu W-C, et al. A 16 nm 128 Mb SRAM in High-$\kappa$ metal-gate FinFET technology with write-assist circuitry for low-VMIN applications. J Solid-State Circ, 2015, 50: 170-177 CrossRef Google Scholar

[65] Song T, Rim W, Jung J, et al. A 14 nm FinFET 128 Mb SRAM with $V_{\rm MIN}$ enhancement techniques for low-power applications. J Solid-State Circ, 2015, 50: 158-169 CrossRef Google Scholar

[66] Borkar S, Ko U, Keshavarzi A, et al. Empowering the killer SoC applications of 2020. In: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, 2013. 517-517. Google Scholar

[67] Bryzek J, Peterson K, McCulley W. Micromachines on the March. IEEE Spectrum, 1994, 31: 20-31. Google Scholar

[68] Guo S W. High temperature smart-cut SOI pressure sensor. Sensors Actuat A: Phys, 2009, 154: 255-260 CrossRef Google Scholar

[69] Ned A A, Goodman S, Vandeweert J. High accuracy, high temperature pressure probes for aerodynamic testing. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, 2011. 4-7. Google Scholar

[70] Liu G D, Cui W P, Hu H, et al. Silicon on insulator pressure sensor based on a thermostable electrode for high temperature applications. Micro and Nano Lett, 2015, 10: 496-499 CrossRef Google Scholar

[71] Okojie R S, Ned A A, Kurtz A D, et al. (6H)-SiC pressure sensors for high temperature applications. In: Proceedings of Micro Electro Mechanical Systems (MEMS'96), San Diego, 1996. 146-149. Google Scholar

[72] Jin S, Rajgopal S, Mehregany M. Silicon carbide pressure sensor for high temperature and high pressure applications: Influence of substrate material on performance. In: Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, 2011. 2026-2029. Google Scholar

[73] Okojie R S. Fabrication and characterization of single-crystal silicon carbide MEMS. In: MEMS Handbook: Mohamed Gad-el-Hak. Cambridge: CRC Press, 2002, 20: 1-31. Google Scholar

[74] Dzuba J, Vanko G, Drzik M, et al. AlGaN/GaN diaphragm-based pressure sensor with direct high performance piezoelectric transduction mechanism. Appl Phys Lett, 2015, 107: 6386. Google Scholar

[75] Smith A D, Niklaus F, Paussa A, et al. Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett, 2013, 13: 3237-3242 CrossRef Google Scholar

[76] Tian H, Shu Y, Wang X-F, et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci Rep, 2015, 5: 8603-3242 CrossRef Google Scholar

[77] Cao Z, Yuan Y, He G, et al. Fabrication of multi-layer vertically stacked fused silica microsystems. In: Proceedings of Transducers {&} Eurosensors XXVII: the 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS {&} EUROSENSORS XXVII), Barcelona, 2013. 810-813. Google Scholar

[78] Emilio Serrano D E. Integrated inertial measurement units using silicon bulk- acoustic wave gyroscopes. Dissertation for Ph.D. Degree. Atlanta: Georgia Institute of Technology, 2014. 119-121. Google Scholar

[79] Efimovskaya A, Senkal D, Shkel A M. Miniature origami-like folded MEMS TIMU. In: Proceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, 2015. 584-587. Google Scholar

[80] Challoner A D, Ge H H, Liu J Y. Boeing disc resonator gyroscope. In: Proceedings of IEEE/ION Position, Location and Navigation Symposium, Monterey, 2014. 504-514. Google Scholar

[81] Cho J Y, Najafi K. A high-q all-fused silica solid-stem wineglass hemispherical resonator formed using micro blow torching and welding. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 821-824. Google Scholar

[82] Senkal D, Ahamed M J, Ardakani M A A, et al. Demonstration of 1 million Q-Factor on microglassblown wineglass resonators with out-of-plane electrostatic transduction. IEEE/ASME J Microelectromech Syst, 2015, 24: 29-37 CrossRef Google Scholar

[83] Tortonese M, Barrett R C, Quate C F. Atomic resolution with an atomic force microscope using piezoresistive detection. Appl Phys Lett, 1993, 62: 834-836 CrossRef Google Scholar

[84] Chui B W, Stowe T D, Kenny T W, et al. Low-stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope. Appl Phys Lett, 1996, 69: 2767-2769 CrossRef Google Scholar

[85] Pruitt B L, Kenny T W. Piezoresistive cantilevers and measurement system for characterizing low force electrical contacts. Sensors Actuat A: Phys, 2003, 104: 68-77 CrossRef Google Scholar

[86] Dukic M, Adams J D, Fantner G E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Sci Rep, 2015, 5: 16393-77 CrossRef Google Scholar

[87] Zhao R, Zhang J, Yang J, et al. Multi-target toxin detections based on piezoresistive microcantilevers. In: Proceedings of the 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Freiburg, 2013. 1514-1516. Google Scholar

[88] Zhao R, Wen Y, Yang J, et al. Aptasensor for staphylococcus enterotoxin B detection using high SNR piezoresistive microcantilevers. J Microelectromech Syst, 2014, 23: 1054-1062 CrossRef Google Scholar

[89] Zhao R, Ma W, Wen Y, et al. Trace level detections of abrin with high SNR piezoresistive cantilever biosensor. Sensors Actuat B: Chem, 2015, 212: 112-119 CrossRef Google Scholar

[90] Yu H T, Chen Y, Xu P C, et al. Water-proof `$\upmu$-diving suit' dressed on resonant biochemical sensor for online detection in solution. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 612-612. Google Scholar

[91] Yu F, Xu P C, Wang J C, et al. Dog-bone resonator with high-q in liquid for low-cost quick `test-paper' detection of analyte droplet. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 785-785. Google Scholar

[92] Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293: 1289-1292 CrossRef Google Scholar

[93] Stern E, Klemic J F, Routenberg D A, et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature, 2007, 445: 519-522 CrossRef Google Scholar

[94] Ramgir N S, Yang Y, Zacharias M. Nanowire-based sensors. Small, 2010, 6: 1705-1722 CrossRef Google Scholar

[95] Mu L, Chang Y, Sawtelle S D, et al. Silicon nanowire field-effect transistors--a versatile class of potentiometric nanobiosensors. Access IEEE, 2015, 3: 287-302 CrossRef Google Scholar

[96] Terrones M. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Cheminform, 2004, 35: 419-501. Google Scholar

[97] Venkatesan B M, Bashir R. Nanopore sensors for nucleic acid analysis. Nat Nanotech, 2011, 6: 615-624 CrossRef Google Scholar

[98] Marx V. Nanopores: a sequencer in your backpack. Nat Methods, 2015, 12: 1015-1018 CrossRef Google Scholar

[99] 方肇伦. 微流控分析芯片. 北京: 科学出版社, 2003. Google Scholar

[100] Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuat B, 1990, 1: 244-248 CrossRef Google Scholar

[101] Duan C, Wang W, Xie Q. Review article: fabrication of nanofluidic devices. Biomicrofluidics, 2013, 7: 026501-248 CrossRef Google Scholar

[102] Liu Y, Yobas L. Label-free specific detection of femtomolar cardiac troponin using an integ rated nanoslit array fluidic diode. Nano Lett, 2014, 14: 6983-6990 CrossRef Google Scholar

[103] Zhou K, Perry J M, Jacobson S C. Transport and sensing in nanofluidic devices. Annual Rev Anal Chem, 2011, 4: 321-341 CrossRef Google Scholar

[104] Vlassiouk I, Kozel T R, Siwy Z S. Biosensing with nanofluidic diodes. J Amer Chem Soc, 2009, 131: 8211-8220 CrossRef Google Scholar

[105] Chen Z, Wang Y, Wang W, et al. Nanofluidic electrokinetics in nanoparticle crystal. Appl Phys Lett, 2009, 95: 102-105. Google Scholar

[106] Lei Y, Xie F, Wang W, et al. Suspended nanoparticle crystal (S-NPC): a nanofluidics-based, electrical read-out biosensor. Lab on a Chip, 2010, 10: 2338-2340 CrossRef Google Scholar

[107] Sang J, Du H, Wang W, et al. Protein sensing by nanofluidic crystal and its signal enhancement. Biomicrofluidics, 2013, 7: 024112-2340 CrossRef Google Scholar

[108] Weiland J D, Humayun M S. Visual prosthesis. Proc IEEE, 2008, 96: 1076-1084 CrossRef Google Scholar

[109] Sun Y G, Choi W M, Jiang H Q, et al. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotech, 2006, 1: 201-207 CrossRef Google Scholar

[110] Khang D-Y, Jiang H Q, Huang Y, et al. Rogers. a stretchable form of single-crystal silicon for high-performance electronics on rubber substrate. Science, 2006, 311: 208-212. Google Scholar

[111] Rogers J A, Someya T, Huang Y G. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603-1607 CrossRef Google Scholar

[112] Kim D, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333: 838-838 CrossRef Google Scholar

[113] Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9: 511-517 CrossRef Google Scholar

[114] Kim K, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457: 706-710 CrossRef Google Scholar

[115] Fedder G K, Santhanam S, Reed M L, et al. Laminated high-aspect-ratio micro-structures in a conventional CMOS process. Sensor Actuat, 1996, A57: 103-110. Google Scholar

[116] Fedder G K, Howe R T, Liu T-J K, et al. Technologies for cofabricating MEMS and electronics. Proc IEEE, 2008, 96: 306-322 CrossRef Google Scholar

[117] Zhu X, Greve D W, Lawton R, et al. Factorial experiment on CMOS-MEMS RIE post processing. In: Proceedings of the 194th Electrochemical Society Meeting, Symposium on Microstructures and Microfabricated Systems IV, Boston, 1998. 33-42. Google Scholar

[118] Xie H, Fedder G K. A CMOS-MEMS lateral-axis gyroscope. In: Proceedings of the 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2001), Interlaken, 2001. 162-165. Google Scholar

[119] Tan S S, Liu C Y, Yeh L K, et al. A new process for CMOS MEMS capacitive sensors with high sensitivity and thermal stability. J Micromech Microeng, 2011, 21: 35005-35014 CrossRef Google Scholar

[120] Liu Y-C, Tsai M-H, Tang T-L, et al. Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers. J Micromech Microeng, 2011, 21: 105005-105013 CrossRef Google Scholar

[121] Li C-S, Hou L-J, Li S-S. Advanced CMOS-MEMS resonator platform. IEEE Electron Dev Lett, 2012, 33: 272-274 CrossRef Google Scholar

[122] InvenSense. Sensor System on Chip. https://www.invensense.com. 2016. Google Scholar

[123] Wang J C, Li X X. Single-side fabricated pressure sensors for IC- foundry-compatible, high-yield, and low-cost volume production. IEEE Electron Dev Lett, 2011, 32: 979-981 CrossRef Google Scholar

[124] Lee K-W, Noriki A, Kiyoyama K J, et al. Three-dimensional hybrid integration technology of CMOS, MEMS, and photonics circuits for optoelectronic heterogeneous integrated systems. IEEE Trans Electron Dev, 2011, 58: 748-757 CrossRef Google Scholar

[125] Jeddeloh J, Keeth B. Hybrid memory cube new DRAM architecture increases density and performance. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2012. 87-88. Google Scholar

[126] Micron Technology. Micron Technology Ships First Samples of Hybrid Memory Cube. http://www.globenewswire. com/NewsRoom/Attachment/21136. 2014. Google Scholar

[127] Vangal S, Howard J, Ruhl G, et al. An 80-tile 1.28 TFLOPS network-on-chip in 65nm CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 2007. 98-99. Google Scholar

[128] Lim S K. 3D-MAPS: 3D massively parallel processor with stacked memory. In: Design for High Performance, Low Power, and Reliable 3D Integrated Circuits. New York: Springer, 2013. 537-560. Google Scholar

[129] Ivo Bolsens. 2.5D ICs: just a stepping stone or a long term alternative to 3D. http://www.xilinx.com. 2011. Google Scholar

[130] Lau J H. Evolution, challenge, and outlook of TSV, 3D IC integration and 3D silicon integration. In: Proceedings of International Symposium on Advanced Packaging Materials (APM), Xiamen, 2011. 462-488. Google Scholar

[131] Li L, Higashi M, Takano A, et al. Cost and performance effective silicon interposer and vertical interconnect for 3D ASIC and memory integration. In: Proceedings of the 64th Electronic Components and Technology Conference (ECTC), Orlando, 2014. 1366-1371. Google Scholar

[132] Lee C K, Chien C H, Chiang C W, et al. Investigation of the process for glass interposer. In: Proceedings of the 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, 2013. 194-197. Google Scholar

[133] Sukumaran V, Bandyopadhyay T, Sundaram V, et al. Low-cost thin glass interposers as a superior alternative to silicon and organic interposers for packaging of 3-D ICs. IEEE Trans Compon Pack Manuf Tech, 2012, 2: 1426-1433 CrossRef Google Scholar

[134] Sukumaran V, Kumar G, Ramachandran K, et al. Design, fabrication, and characterization of ultrathin 3-D glass interposers with through-package-vias at same pitch as TSVs in silicon. IEEE Trans Compon Pack Manuf Tech, 2014, 4: 786-795 CrossRef Google Scholar

[135] Fischer A C, Forsberg F, Lapisa M, et al. Integrating MEMS and ICs. Microsyst Nanoeng, 2015, 2015: 15005. Google Scholar

[136] Yole Développement. Inertial MEMS Manufacturing Trends 2014 - Volumes 1{&}2. http://www.yole.fr/ Reports.aspx. 2014. Google Scholar

[137] Su T H, Nitzan S, Taheri-Tehrani P, et al. MEMS disk resonator gyroscope with integrated analog front-end. In: Proceedings of IEEE SENSORS, Baltimore, 2013. 1-4. Google Scholar

[138] Seeger J, Lim M, Nasiri S. Development of high-performance, high-volume consumer MEMS gyroscopes. In: Proceedings of Solid-State Sensors Actuators Microsystems Workshop, Waikoloa, 2010. 61-64. Google Scholar

[139] 敏芯微电子. 敏芯联手中芯国际推出全球最小的商业化三轴加速度传感器MSA330. http://www.memsensing. com/htmlscn/news{\_}detail.php?id=39. 2015. Google Scholar

[140] Zhao Y, Zavracky P M, Cai Y. Monolithic Sensor Package. U.S. Patent, 13/674, 506, 2012-11-12. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号