logo

SCIENTIA SINICA Informationis, Volume 46, Issue 11: 1676-1692(2016) https://doi.org/10.1360/N112016-00096

Unification and simplification for position updating formulas in particle swarm optimization

More info
  • ReceivedAug 19, 2016
  • AcceptedSep 9, 2016
  • PublishedNov 9, 2016

Abstract

Particle swarm optimization (PSO) has been a popular research area in artificial intelligence technology, where the two issues of theoretical analysis and premature convergence have been the focus of attention. However, due to the complex dynamics of a particle swarm, the former was conducted only for simplified systems. The latter has only been addressed by introducing some additional operations, which inevitably increases the complexity of PSO and complicates the theoretical analysis. This paper proposes a unified and simplified rule for position updating in the existing algorithms as an attempt to solve the above-mentioned problems. This rule simplifies the multiple-order stochastic difference equation to a first-order stochastic difference equation, and facilitates the analysis of the convergence and control of the search behavior of particles. Experiments were conducted on some representative algorithms, and the results verified the correctness of the unification and simplification of position updating formulas, which also performed more competitively.


Funded by

教育部人文社会科学研究青年基金项目(15YJC870010)

四川省科技厅科技支撑项目(2014SZ0104)

四川省教育厅资助科研项目重点项目(16ZA0012)

西南民族大学研究生学位点建设项目(2016-XWD-B0304)


References

[1] Kennedy J, Eberhart R, Shi Y. Swarm Intelligence. Singapore: Elsevier (Singapore) Pte Ltd, 2009. Google Scholar

[2] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, 1995. 1942-1948. Google Scholar

[3] Bergh F V D, Engelbrecht A P. A study of particle swarm optimization particle trajectories. Inf Sci, 2006, 8: 937-971. Google Scholar

[4] Cleghorn C W, Engelbrecht A P. A generalized theoretical deterministic particle swarm model. Swarm Intell, 2014, 1: 35-59. Google Scholar

[5] Kadirkamanathan V, Selvarajah K, Fleming P J. Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans Evol Comput, 2006, 3: 245-255. Google Scholar

[6] Poli R. Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Trans Evol Comput, 2009, 4: 712-721. Google Scholar

[7] Cleghorn C W, Engelbrecht A. Fully informed particle swarm optimizer: convergence analysis. In: Proceedings of IEEE Congress on Evolutionary Computation, Sendai, 2015. 164-170. Google Scholar

[8] Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization. IEEE Trans Syst Man Cyber, 2009, 6: 1362-1381. Google Scholar

[9] Hu M, Wu T F, Weir J D. An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evol Comput, 2013, 5: 705-720. Google Scholar

[10] Chu X, Hu M, Wu T, et al. AHPS 2: an optimizer using adaptive heterogeneous particle swarms. Inf Sci, 2014, 280: 26-52 CrossRef Google Scholar

[11] Saxena N, Tripathi A, Mishra K K, et al. Dynamic-PSO: an improved particle swarm optimizer. In: Proceedings of IEEE Congress on Evolutionary Computation, Sendai, 2015. 212-219. Google Scholar

[12] Mahmoodabadi M J, Mottaghi Z S, Bagheri A. HEPSO: high exploration particle swarm optimization. Inf Sci, 2014, 18: 101-111. Google Scholar

[13] Sun J, Feng B, Xu W. Particle swarm optimization with particles having quantum behavior. In: Proceedings of IEEE Congress on Evolutionary Computation, Portland, 2004. 1571-1580. Google Scholar

[14] Sun J, Fang W, Palade V, et al. Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point. Appl Math Comput, 2011, 7: 3763-3775. Google Scholar

[15] Kennedy J. In search of the essential particle swarm. In: Proceedings of IEEE Congress on Evolutionary Computation, Vancouver, 2006. 1694-1701. Google Scholar

[16] Bratton D, Kennedy J. Defining a standard for particle swarm optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium, Honolulu, 2007. 120-127. Google Scholar

[17] Clerc M, Kennedy J. The particle swarm--explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput, 2002, 1: 58-73. Google Scholar

[18] Shi Y, Eberhart R. A modified particle swarm optimizer. In: Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, 1998. 69-73. Google Scholar

[19] Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, Trondheim, 1999. 1951-1957. Google Scholar

[20] Spears W M, Green D T, Spears D F. Biases in particle swarm optimization. Int J Swarm Intell Res, 2010, 2: 34-57. Google Scholar

[21] Hariya Y, Kurihara T, Shindo T, et al. Lévy flight PSO. In: Proceedings of IEEE Congress on Evolutionary Computation, Sendai, 2015. 2678-2684. Google Scholar

[22] Oca M A M D, Thomas S, Ken V D E, et al. Incremental social learning in particle swarms. IEEE Trans Syst Man Cyber, 2011, 2: 368-384. Google Scholar

[23] Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, Korea, 2001. 101-106. Google Scholar

[24] Mendes R. Population topologies and their influence in particle swarm performance. Dissertation for Ph.D. Degree. Portugal: Minho University, 2004. Google Scholar

[25] Yang S, Li C. A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans Evol Comput, 2010, 6: 959-974. Google Scholar

[26] Hu J, Wang Z, Qiao S, et al. The fitness evaluation strategy in particle swarm optimization. Appl Math Comput, 2011, 21: 8655-8670. Google Scholar

[27] Helwig S, Branke J, Mostaghim S. Experimental analysis of bound handling techniques in particle swarm optimization. IEEE Trans Evol Comput, 2013, 2: 259-271. Google Scholar

[28] van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput, 2004, 3: 225-239. Google Scholar

[29] Mendes R, Kennedy J, Neves J. The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput, 2004, 3: 204-210. Google Scholar

[30] Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput, 2006, 3: 281-295. Google Scholar

[31] Zhan Z H, Zhang J, Li Y, et al. Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput, 2011, 6: 832-847. Google Scholar

[32] Wang L, Yang B, Chen Y. Improving particle swarm optimization using multi-layer searching strategy. Inf Sci, 2014, 274: 70-94 CrossRef Google Scholar

[33] Kennedy J. Bare bones particle swarms. In: Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, 2003. 80-87. Google Scholar

[34] Cui Z, Zeng J, Sun G. Predicted particle swarm optimization. In: Proceedings of IEEE International Conference on Cognitive Informatics, Beijing, 2006. 658-661. Google Scholar

[35] Cai M, Zhang X, Tian G, et al. Particle swarm optimization system algorithm. Commun Comput Inf Sci, 2007, 3: 388-395. Google Scholar

[36] Kennedy J. In search of the essential particle swarm. In: Proceedings of IEEE Congress on Evolutionary Computation, Vancouver, 2006. 1679-1686. Google Scholar

[37] Salomon R. Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. Biosystems, 1996, 39: 263-278 CrossRef Google Scholar

[38] Zeng J C, Cui Z H. A guaranted global convergence particle swarm optimizer. J Comput Res Dev, 2004, 8: 1333-1338 [曾建潮, 崔志华. 一种保证全局收敛的PSO 算法. 计算机研究与发展, 2004, 8: 1333-1338]. Google Scholar

[39] Solis F J, Wets R J B. Minimization by random search techniques. Math Oper Res, 1981, 1: 19-30. Google Scholar

[40] Cleghorn C W, Engelbrecht A P. Particle swarm convergence: an empirical investigation. In: Proceedings of IEEE Congress on Evolutionary Computation, Beijing, 2014. 2524-2530. Google Scholar

[41] Jaccard J, Wan C K. LISREL Approaches to Interaction Effects in Multiple Regression. Calif: Sage Publications, 1996. Google Scholar

[42] Tang K, Yang P, Yao X. Negatively correlated search. IEEE J Sel Areas Commun, 2016, 3: 542-550. Google Scholar

[43] Beyer H G, Schwefel H P. Evolution strategies--a comprehensive introduction. Natural Comput, 2002, 1: 3-52 CrossRef Google Scholar

[44] Storn R, Price K. Differential evolution--a simple and efficient heuristic for global optimization over continuous spaces. J Global Opt, 1997, 4: 341-359. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号