SCIENTIA SINICA Informationis, Volume 46, Issue 9: 1211-1235(2016) https://doi.org/10.1360/N112016-00111

Developments and prospects of high-performance detection imaging and identification

More info
  • ReceivedApr 27, 2016
  • AcceptedAug 26, 2016
  • PublishedSep 18, 2016


High-performance detection imaging and identification is one of the frontier areas in modern information science. It has developed rapidly in recent years, and the urgent need for its applications has accelerated the development. In this paper, four key areas of high-performance imaging detection and identification, namely multi-dimensional microwave detection imaging, weak signal detection and recognition, multi-mode imaging theory and information reconstruction, and computational imaging theory and methods, are systematically expounded in the areas of concept and content, development status both at home and abroad, current popularity and difficulty, typical applications, and future developing trends. In addition, related scientific issues are discussed and summarized. Although the specific problems faced in each field differ from each other, some common and fundamental issues, which should be investigated, include the interaction mechanism between the imaging measures and the target, the acquisition mechanism of detection-imaging data, and target-feature extraction and reconstruction after detection imaging.

Funded by




[1] Varshney K R, Cetin M, Fisher J W, et a1. Sparse represent ation in structured dictionaries with application to synthetic aperture radar. IEEE Trans Signal Process, 2008, 56: 3548-3561 CrossRef Google Scholar

[2] Li W Q, Gao J, Cao X Y, et al. A kind of shared aperture radar absorbing material with absorber and phase cancellation characteristics. Acta Phys Sin, 2014, 63: 1-7 [李文强, 高军, 曹祥玉, 等. 一种具有吸波和相位相消特性的共享孔径雷达 吸波材料. 物理学报, 2014, 63: 1-7]. Google Scholar

[3] Xue Q S, Huang Y, Lin G Y. Optical system design of wide-angle and high-resolution spaceborne imaging spectrometer. Acta Opt Sin, 2011, 31: 0822001-3561 CrossRef Google Scholar

[4] Johnson M K, Cole F, Raj A, et al. Microgeometry capture using an elastomeric sensor. ACM Trans Graph, 2011, 30: 46. Google Scholar

[5] Qian L L. Research on computational imaging spectroscopy. Dissertation for Ph.D. Degree. Hefei: University of Science and Technology of China, 2013 [钱路路. 计算光谱成像技术研究. 博士学位论文. 合肥: 中国科技大学, 2013]. Google Scholar

[6] Sherwin C W, Ruina J P, Rawclisse R D. Some early developments in synthetic aperture radar systems. IRE Trans Military Eletron, 1962, 6: 111-115. Google Scholar

[7] Brown W M. Synthetic aperture radar. IEEE Trans Aero Electron Syst, 1967, 3: 217-229. Google Scholar

[8] Wiley C A. Synthetic aperture radar. IEEE Trans Aero Electron Syst, 1985, 21: 440-443. Google Scholar

[9] Moreira J, Schwabisch M, Fornaro G. X-SAR interferometry: first results. IEEE Trans Geosci Remote Sens, 1995, 33: 950-956 CrossRef Google Scholar

[10] Gabriel A K, Goldstein R M. Crossed orbit interferometry: theory and experimental results from SIR-B. Inter J Remote Sens, 1988, 9: 857-872 CrossRef Google Scholar

[11] Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: two-dimension phase unwrapping. Radio Sci, 1988, 23: 713-720 CrossRef Google Scholar

[12] Hoen E W, Zebker H A. Penetration depths in inferred from interferometric volume decorrelation observed over the Greenland ice sheet. IEEE Trans Geosci Remote Sens, 2000, 38: 2571-2582 CrossRef Google Scholar

[13] Bamler R, Eineder M. ScanSAR processing using standard high precision SAR algorithms. IEEE Trans Geosci Remote Sens, 1996, 34: 212-218 CrossRef Google Scholar

[14] Prati C, Rocca F. Improving slant-range resolution with multiple SAR surveys. IEEE Trans Aero Electron Syst, 1993, 29: 135-143 CrossRef Google Scholar

[15] Curlander C, McDonough R N. Synthetic Aperture Radar: Systems and Signal Processing. New York: Wiley, 1991. Google Scholar

[16] Langenberg K J, Brandfa{\ss} M, Fellinger P, et al. Radar Target Imaging. Berlin: Springer-Verlag, 1994. 113-151. Google Scholar

[17] Huynen J R. Phenomenological theory of radar targets. Dissertation for Ph.D. Degree. Delft: Delft University of Technology, 1970. Google Scholar

[18] Boener W M. Need for developing multi-band single and multiple pass PolInSAR platforms in air and space. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Toulouse, 2003, 25: 422-424. Google Scholar

[19] Wu Y R. Concept of multidimensional space joint-observation SAR. J Radars, 2013, 2: 135-142 [吴一戎. 多维度合成孔径雷达成像概念. 雷达学报, 2013, 2: 135-142]. Google Scholar

[20] Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens, 1997, 35: 68-78 CrossRef Google Scholar

[21] Cloude S R, Papathanassiou K P. Polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens, 1998, 36: 1551-1565 CrossRef Google Scholar

[22] Cafforio C, Prati C, Rocca F. SAR data focusing using seismic migration techniques. IEEE Trans Aero Electron Syst, 1991, 27: 194-207 CrossRef Google Scholar

[23] Moser G, Serpico S B, Zerubia J. Dictionary-based stochastic expectation maximization for SAR amplitude probability density function estimation. IEEE Trans Geosci Remote Sens, 2006, 44: 188-200 CrossRef Google Scholar

[24] Moser G, Krylov V, Serpico S B, et al. High resolution SAR image classification by Markov random fields and finite mixtures. Proc SPIE, San Jose, 2010, 7533: 753308. Google Scholar

[25] Krylov V A, Moser G, Serpico S B, et al. Enhanced dictionary-based SAR amplitude distribution estimation and its validation with very high-resolution data. IEEE Geosci Remote Sens Lett, 2011, 8: 148-152 CrossRef Google Scholar

[26] Ding L F, Zhang P. Radar System. Xi'an: Publishing house of Xidian University [丁鹭飞, 张平. 雷达系统. 西安: 西安电子科技大学出版社]. Google Scholar

[27] Gao G, Liu L, Zhao L, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE Trans Geosci Remote Sens, 2009, 47: 1685-1697 CrossRef Google Scholar

[28] Hwang S I, Ouchi K. On a novel approach using MLCC and CFAR for the improvement of ship detection by synthetic aperture radar. IEEE Geosci Remote Sens Lett, 2010, 7: 391-395 CrossRef Google Scholar

[29] Brusch S, Lehner S, Fritz T, et al. Ship surveillance with TerraSAR-X. IEEE Trans Geosci Remote Sens, 2011, 49: 1092-1103 CrossRef Google Scholar

[30] Zhu C, Zhou H, Wang R, et al. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features. IEEE Trans Geosci Remote Sens, 2010, 48: 3446-3456 CrossRef Google Scholar

[31] Gao G. An improved scheme for target discrimination in high-resolution SAR images. IEEE Trans Geosci Remote Sens, 2011, 49: 277-294 CrossRef Google Scholar

[32] Bin L, Wang H Y, Wang K Z, et al. A foreground/background separation framework for interpreting polarimetric SAR images. IEEE Geosci Remote Sens Lett, 2011, 8: 288-292 CrossRef Google Scholar

[33] Candes E J, Donoho D L. Curvelets--a Surprisingly Effective Nonadaptive Representation for Objects with Edges. Technical Report, Stanford University, 1999. Google Scholar

[34] Le Pennec E, Mallat S. Sparse geometric image representation with bandelets. IEEE Trans Image Process, 2005, 14: 423-438 CrossRef Google Scholar

[35] Itti L, Koch C. Computational modeling of visual attention. Nature Rev Neurosci, 2001, 2: 194-203 CrossRef Google Scholar

[36] Karklin Y, Lewicki M S. Emergence of complex cell properties by learning to generalize in natural scenes. Nature, 2009, 457: 83-86 CrossRef Google Scholar

[37] Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms. In: Proceedings of Conference on Neural Information Processing System, Vancouver, 2007. 801-808. Google Scholar

[38] Yang J, Yu K, Gong Y, et al. Linear spatial pyramid matching using sparse coding for image classication. In: Proceedings of Conference on Computer Vision and Pattern Recognition, Miami, 2009. 1794-1801. Google Scholar

[39] Bai X, Zhang H, Zhou J. VHR object detection based on structural feature extraction and query expansion. IEEE Trans Geosci Remote Sens, 2014, 52: 1-13 CrossRef Google Scholar

[40] Huang X, Zhang L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery. IEEE Trans Geosci Remote Sens, 2013, 51: 257-272 CrossRef Google Scholar

[41] Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell, 2013, 35: 1798-1828 CrossRef Google Scholar

[42] Shao L, Wu D, Li X. Learning deep and wide: a spectral method for learning deep networks. IEEE Trans Neural Netw Learn Syst, 2014, 25: 2303-2308 CrossRef Google Scholar

[43] Bengio Y, Lamblin P, Popovici D, et al. Greedy layerwise training of deep networks. In: Proceedings of Conference on Neural Information Processing System, Vancouver, 2006. 153-160. Google Scholar

[44] Plebe A. A model of the response of visual area V2 to combinations of orientations. Netw Comput Neural Syst, 2012, 23: 105-122. Google Scholar

[45] Hinton G, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neu Comput, 2006, 18: 1527-1554 CrossRef Google Scholar

[46] Yuan Y, Sun J, Mao S. PFA algorithm for airborne spotlight SAR imaging with nonideal motions. IEE Proc Radar Sonar Nav, 2002, 149: 174-182 CrossRef Google Scholar

[47] Zhu D Y, Zhu Z D. Range resampling in the polar format algorithm for spotlight SAR image formation using the chirp-Z transform. IEEE Trans Signal Process, 2007, 55: 1011-1023 CrossRef Google Scholar

[48] Cao F, Hong W, Wu Y R, et al. An unsupervised segmentation with an adaptive number of clusters using the SPAN/H/a/A space and the complex wishart clustering for fully polarimetric SAR data analysis. IEEE Trans Geosci Remote Sens, 2007, 45: 3454-3467 CrossRef Google Scholar

[49] Yang J, Yamaguchi Y, Yamada Y, et al. The characteristic polarization states and the equi-power curves. IEEE Trans Geosci Remote Sens, 2002, 40: 305-313 CrossRef Google Scholar

[50] Tao Z, Cherniakov M, Teng L. Generalized approach to resolution analysis in BSAR. IEEE Trans Aero Electron Syst, 2005, 41: 10-20. Google Scholar

[51] He X, Cherniakov M, Zeng T. Signal detectalility in SS-BSAR with GNSS non-cooperative transmitter. IEE Proc Radar Sonar Nav, 2005, 152: 124-132 CrossRef Google Scholar

[52] Ender J H G, Brenner A R. PAMIR -- a wideband phased SAR/MTI system. IEE Proc Radar Sonar Nav, 2003, 150: 165-172 CrossRef Google Scholar

[53] Li Z F, Bao Z, Li H, et al. Image auto-coregistration and InSAR interferogram estimation using joint subspace projection. IEEE Trans GRS, 2006, 44: 288-297. Google Scholar

[54] Cloude S R, Papathanassiou K P. Polarimetric SAR interferometry. IEEE Trans GRS, 1998, 36: 1551-1565. Google Scholar

[55] Li Z F, Bao Z, Wang H Y, et al. Performance improvement for constellation SAR using signal processing techniques. IEEE Trans Aero Electron Syst, 2006, 42: 436-452 CrossRef Google Scholar

[56] Wang T, Bao Z. Improving the image quality of spaceborne multiple-aperture SAR under minimization of sidelobe clutter and noise. IEEE Geosci Remote Sens Lett, 2006, 3: 297-301 CrossRef Google Scholar

[57] Zhang Z H, Xing M D, Ding J S, et al. Focusing parallel bistatic SAR data using the analytic transfer function in the wavenumber domain. IEEE Trans Geosci Remote Sens, 2007, 45: 3633-3645 CrossRef Google Scholar

[58] Wang T, Bao Z, Zhang Z H, et al. Improving coherence of complex image pairs obtained by along-track bistatic SARs using range-azimuth prefiltering. IEEE Trans Geosci Remote Sens, 2008, 46: 3-13 CrossRef Google Scholar

[59] Zernike F. How I discovered phase contrast. Science, 1955, 121: 345-349 CrossRef Google Scholar

[60] Yamaguchi I, Zhang T. Phase-shifting digital holography. Opt Lett, 1997, 22: 1268-1270 CrossRef Google Scholar

[61] Bifano T. Adaptive imaging: MEMS deformable mirrors. Nature Photon, 2011, 5: 21-23 CrossRef Google Scholar

[62] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2004, 52: 489-509 CrossRef Google Scholar

[63] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 1994, 19: 780-782 CrossRef Google Scholar

[64] Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J, 2006, 91: 4258-4272 CrossRef Google Scholar

[65] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 2006, 3: 793-796 CrossRef Google Scholar

[66] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci United States of America, 2005, 102: 13081-13086 CrossRef Google Scholar

[67] Brady D J, Gehm M E, Stack R A, et al. Multiscale gigapixel photography. Nature, 2012, 486: 386-389 CrossRef Google Scholar

[68] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photon, 2013, 7: 739-745 CrossRef Google Scholar

[69] Velten A, Wu D, Jarabo A, et al. Femto-photography: capturing and visualizing the propagation of light. ACM Trans Graph, 2013, 32: 44. Google Scholar

[70] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 2009, 458: 1145-1149 CrossRef Google Scholar

[71] Nakagawa K, Iwasaki A, Oishi Y, et al. Sequentially timed all-optical mapping photography (STAMP). Nature Photon, 2014, 8: 695-700 CrossRef Google Scholar

[72] Velten A, Willwacher T, Gupta O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of flight imaging. Nat Commun, 2012, 3: 745-700 CrossRef Google Scholar

[73] Choi W, Fang-Yen C, Badizadegan K, et al. Tomographic phase microscopy. Nat Methods, 2007, 4: 717-719 CrossRef Google Scholar

[74] Waller L, Situ G, Fleischer J W. Phase-space measurement and coherence synthesis of optical beams. Nature Photon, 2012, 6: 474-479 CrossRef Google Scholar

[75] Levoy M, Ng R, Adams A, et al. Light field microscopy. ACM Trans Graph, 2006, 25: 924-934 CrossRef Google Scholar

[76] Prevedel R, Yoon Y G, Hoffmann M, et al. Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy. Nat Methods, 2014, 11: 727-730 CrossRef Google Scholar

[77] Bao J, Bawendi M G. A colloidal quantum dot spectrometer. Nature, 2015, 523: 67-70 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号