logo

SCIENTIA SINICA Informationis, Volume 46, Issue 9: 1236-1254(2016) https://doi.org/10.1360/N112016-00125

Frontiers in ultrafast optics and ultra-intense laser technology

More info
  • ReceivedMay 13, 2016
  • AcceptedAug 25, 2016
  • PublishedSep 18, 2016

Abstract

Ultrafast optics and ultra-intense laser technology, which are important frontiers in the fields of optics and lasers, are expected to promote fundamental science discoveries and high-technology developments. In this paper, the current status and future trends of ultrafast optics and ultra-intense laser technology are introduced briefly, including the applications of ultrafast and ultra-intense lasers in particle acceleration, attosecond science, ultrafast nonlinear optics, micro/nano-fabrication, broadband optical frequency combs, etc. The future prospects and key techniques for generating ultra-intense and ultra-short laser pulses with higher performance are also described.


Funded by

国家自然科学基金(11127901)

国家自然科学基金(61521093)

国家自然科学基金(11134010)


References

[1] Kiriyama H, Mori M, Pirozhkov A S, et al. High-contrast, high-intensity petawatt-class laser and applications. IEEE J Sele Topics Quant Electron, 2015, 21: 232-249. Google Scholar

[2] Perry M D, Mourou G. Terawatt to petawatt subpicosecond lasers. Science, 1994, 264: 917-923 CrossRef Google Scholar

[3] Baer T M, Bigelow N P. 2020 Visions (lasers). Nature, 2010, 463: 26-32 CrossRef Google Scholar

[4] Weiner A. Ultrafast Optics. Hoboken: John Wiley {&} Sons Inc, 2011. Google Scholar

[5] Service R F. Laser labs race for the petawatt. Science, 2003, 301: 154-156 CrossRef Google Scholar

[6] Aoyama M, Yamakawa K, Akahane Y, et al. 0.85-PW, 33-fs Ti: sapphire laser. Opt Lett, 2003, 28: 1594-1596. Google Scholar

[7] Yu T J, Lee S K, Sung J H, et al. Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti: sapphire laser. Opt Express, 2012, 20: 10807-10815. Google Scholar

[8] Chu Y, Liang X, Yu L, et al. High-contrast 2.0 petawatt Ti: sapphire laser system. Opt Express, 2013, 21: 29231-29239. Google Scholar

[9] Wang Z, Liu C, Shen Z, et al. High-contrast 1.16 PW Ti: sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. Opt Lett, 2011, 36: 3194-3196. Google Scholar

[10] Bahk S W, Rousseau P, Planchon T A, et al. Generation and characterization of the highest laser intensities \linebreak (10$^{22}$ W/cm$^{2})$. Opt Lett, 2004, 29: 2837-2839 CrossRef Google Scholar

[11] Mourou G, Tajima T. The extreme light infrastructure: optics' next horizon. Optics Photonics News, 2011, 22: 47-51. Google Scholar

[12] Powell D. Europe sets sights on lasers. Nature, 2013, 500: 264-265 CrossRef Google Scholar

[13] Hernandez-Gomez C, Blake S P, Chekhlov O, et al. The vulcan 10 PW project. J Phys Conf Series, 2010, 244: 032006-265 CrossRef Google Scholar

[14] Liang X, Leng Y, Wang C, et al. Parasitic lasing suppression in high gain femtosecond petawatt Ti: sapphire amplifier. Opt Express, 2007, 15: 15335-15341 CrossRef Google Scholar

[15] Xu L, Yu L, Liang X, et al. High-energy noncollinear optical parametric-chirped pulse amplification in LBO at 800 nm. Opt Lett, 2013, 38: 4837-4840 CrossRef Google Scholar

[16] Yu L, Liang X, Xu L, et al. Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm. Opt Lett, 2015, 40: 3412-3415 CrossRef Google Scholar

[17] Liu J S, Xia C Q, Wang W T, et al. All-optical cascaded laser wakefield accelerator using ionization-induced injection. Phys Rev Lett, 2011, 107: 035001-3415 CrossRef Google Scholar

[18] Wang W P, Shen B F, Zhang H, et al. Large-scale proton radiography with micrometer spatial resolution using femtosecond petawatt laser system. AIP Adv, 2015, 5: 107214-3415 CrossRef Google Scholar

[19] Diels J C, Bernstein R, Stahlkopf K E, et al. Lightning control with lasers. Sci American, 1997, 277: 50-55. Google Scholar

[20] Krausz F, Ivanov M. Attosecond physics. Rev Mod Phys, 2009, 81: 163-234 CrossRef Google Scholar

[21] Vozzi C, Calegari F, Ferrari F, et al. Advances in laser technology for isolated attosecond pulse generation. Laser Phys Lett, 2009, 6: 259-267 CrossRef Google Scholar

[22] Gale G M, Gallot G, Hache F, et al. Generation of intense highly coherent femtosecond pulses in the mid infrared. Opt Lett, 1997, 22: 1253-1255 CrossRef Google Scholar

[23] Zhang C, Wei P, Huang Y, et al. Tunable phase-stabilized infrared optical parametric amplifier for high-order harmonic generation. Opt Lett, 2009, 34: 2730-2732 CrossRef Google Scholar

[24] Dudley J M, Finot C, Richardson D J, et al. Self-similarity in ultrafast nonlinear optics. Nature Phys, 2007, 3: 597-603 CrossRef Google Scholar

[25] Thomson R, Leburn C, Reid D. Ultrafast Nonlinear Optics. Berlin: Springer, 2013. Google Scholar

[26] Brabec T, Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev Mod Phys, 2000, 72: 545-591 CrossRef Google Scholar

[27] Rizvi N H. Femtosecond laser micromachining: current status and applications. Riken Rev, 2003, 50: 107-112. Google Scholar

[28] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials. Nature Photon, 2008, 2: 219-225 CrossRef Google Scholar

[29] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs. Nature Photon, 2012, 6: 440-449 CrossRef Google Scholar

[30] Cingöz A, Yost D C, Allison T K, et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature, 2012, 482: 68-71 CrossRef Google Scholar

[31] Hugi A, Villares G, Blaser S, et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 2012, 492: 229-233 CrossRef Google Scholar

[32] Ideguchi T, Holzner S, Bernhardt B, et al. Coherent Raman spectro-imaging with laser frequency combs. Nature, 2013, 502: 355-358 CrossRef Google Scholar

[33] Diddams S A, Jones D J, Ye J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys Rev Lett, 2000, 84: 5102-5105 CrossRef Google Scholar

[34] Gerginov V, Tanner C E, Diddams S A, et al. High-resolution spectroscopy with a femtosecond laser frequency comb. Opt Lett, 2005, 30: 1734-1736 CrossRef Google Scholar

[35] Kalashnikov M P, Risse E, Schönnagel H, et al. Double chirped-pulse-amplification laser: a way to clean pulses temporally. Opt Lett, 2005, 30: 923-925 CrossRef Google Scholar

[36] Shah R C, Johnson R P, Shimada T, et al. High-temporal contrast using low-gain optical parametric amplification. Opt Lett, 2009, 34: 2273-2275 CrossRef Google Scholar

[37] Liu C, Wang Z, Li W, et al. Contrast enhancement in a Ti: sapphire chirped-pulse amplification laser system with a noncollinear femtosecond optical-parametric amplifier. Opt Lett, 2010, 35: 3096-3098 CrossRef Google Scholar

[38] Homoelle D, Gaeta A L, Yanovsky V, et al. Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide. Opt Lett, 2002, 27: 1646-1648 CrossRef Google Scholar

[39] Huang Y, Zhang C, Xu Y, et al. Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification. Opt Lett, 2011, 36: 781-783 CrossRef Google Scholar

[40] Fourmaux S, Payeur S, Buffechoux S, et al. Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system. Opt Express, 2011, 19: 8486-8497 CrossRef Google Scholar

[41] Collier J, Hernandez-Gomez C, Allott R, et al. A single-shot third-order autocorrelator for pulse contrast and pulse shape measurements. Laser Part Beams, 2001, 19: 231-235 CrossRef Google Scholar

[42] Divall E J, Ross I N. High dynamic range contrast measurements by use of an optical parametric amplifier correlator. Opt Lett, 2004, 29: 2273-2275 CrossRef Google Scholar

[43] Sung J H, Lee S K, Yu T J, et al. 0.1 Hz 1.0 PW Ti: sapphire laser. Opt Lett, 2010, 35: 3021-3023. Google Scholar

[44] Kiriyama H, Michiaki M, Nakai Y, et al. High-spatiotemporal-quality petawatt-class laser system. Appl Opt, 2010, 49: 2105-2115 CrossRef Google Scholar

[45] Gaul E W, Martinez M, Blakeney J, et al. Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd: glass amplifier. Appl Opt, 2010, 49: 1676-1681. Google Scholar

[46] Chvykov V, Krushelnick K. Large aperture multi-pass amplifiers for high peak power lasers. Opt Commun, 2012, 285: 2134-2136 CrossRef Google Scholar

[47] Suckewer S. Ultra-intense lasers: beyond a petawatt. Nature Phys, 2011, 7: 11-12 CrossRef Google Scholar

[48] Pipahl A, Anashkina E A, Toncian M, et al. High-intensity few-cycle laser-pulse generation by the plasma-wakefield self-compression effect. Phys Rev E, 2013, 87: 033104-12 CrossRef Google Scholar

[49] Balakin A A, Litvak A G, Mironov V A, et al. Compression of femtosecond petawatt laser pulses in a plasma under the conditions of wake-wave excitation. Phys Rev A, 2013, 88: 023836-12 CrossRef Google Scholar

[50] Katz O, Small E, Bromberg Y, et al. Focusing and compression of ultrashort pulses through scattering media. Nature Photon, 2011, 5: 372-377 CrossRef Google Scholar

[51] Wang H Y, Lin C, Sheng Z M, et al. Laser shaping of a relativistic intense, short gaussian pulse by a plasma lens. Phys Rev Lett, 2011, 107: 265002-377 CrossRef Google Scholar

[52] McCabe D J, Tajalli A, Austin D R, et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nat Commun, 2011, 2: 447-377 CrossRef Google Scholar

[53] Ple F, Pittman M, Jamelot G, et al. Design and demonstration of a high-energy booster amplifier for a high-repetition rate petawatt class laser system. Opt Lett, 2007, 32: 238-240 CrossRef Google Scholar

[54] Lureau F, Laux S, Casagrande O, et al. High repetition rate PetaWatt Titanium Sapphire laser system for laser plasma acceleration. In: Proceedings of Conference on Lasers {&} Electro-Optics Europe {&} International Quantum Electronics Conference, Munich, 2013. 5-6. Google Scholar

[55] Rockwood A, Wang Y, Wang S, et al. Petawatt class laser with high repetition rate for the excitation of X-ray lasers. Bull American Phys Soc, 2015, 60. Google Scholar

[56] 徐至展, 李儒新. 超强超快激光的特点与发展. 科学, 2001, 6: 6-10. Google Scholar

[57] Mourou G, Tajima T. More intense, shorter pulses. Science, 2011, 331: 41-42 CrossRef Google Scholar

[58] Li R X. Electron acceleration and its trajectory control in sub-atom regime and attosecond pulse generation. Opt Optoelectron Tech, 2011, 9: 1-3 [李儒新. 原子级时间与空间尺度的电子加速, 轨道操控与阿秒脉冲产生. 光学与光电技术, 2011, 9: 1-3]. Google Scholar

[59] Bucksbaum P H. Attophysics: ultrafast control. Nature, 2003, 421: 593-594 CrossRef Google Scholar

[60] Guo Y H, Lu R F, Han K L, et al. Generation of an isolated sub-100 attosecond pulse in a two-color laser field. Int J Quant Chem, 2009, 109: 3410-3415 CrossRef Google Scholar

[61] Kim K T, Kim C M, Baik M G, et al. Single sub-50-attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion. Phys Rev A, 2004, 69: 051805-3415 CrossRef Google Scholar

[62] Cao X, Jiang S, Yu C, et al. Generation of isolated sub-10-attosecond pulses in spatially inhomogenous two-color fields. Opt Express, 2014, 22: 26153-26161 CrossRef Google Scholar

[63] Christov I P, Murnane M M, Kapteyn H C. High-harmonic generation of attosecond pulses in the ``single-cycle'' regime. Phys Rev Lett, 1997, 78: 1251-1254 CrossRef Google Scholar

[64] Sansone G, Benedetti E, Calegari F, et al. Isolated single-cycle attoseocnd pulses. Science, 2006, 314: 443-446 CrossRef Google Scholar

[65] Chang Z. Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau. Phys Rev A, 2004, 70: 043802-446 CrossRef Google Scholar

[66] Zeng Z, Cheng Y, Song X, et al. Generation of an extreme ultraviolet supercontinuum in a two-color laser field. Phys Rev Lett, 2007, 98: 754-757. Google Scholar

[67] Zeng Z, Leng Y, Li R, et al. Electron quantum path tuning and isolated attosecond pulse emission driven by a waveform-controlled multi-cycle laser field. Phys B, 2008, 41: 215601-757 CrossRef Google Scholar

[68] Takahashi E J, Lan P F, Mücke O D, et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat Commun, 2013, 4: 141-155. Google Scholar

[69] Drescher M, Hentschel M, Kienberger R, et al. X-ray pulses approaching the attosecond frontier. Science, 2001, 291: 1923-1927 CrossRef Google Scholar

[70] Scrinzi A, Geissler M, Brabec T. Attosecond cross correlation technique. Phys Rev Lett, 2001, 86: 412-415 CrossRef Google Scholar

[71] Hentslchel M, Kienberger R, Spielmann C, et al. Attosecond metrology. Nature, 2001, 414: 509-513 CrossRef Google Scholar

[72] Paul P M, Toma E S, Breger P, et al. Observation of a train of attosecond pulses from high harmonic generation. Science, 2001, 292: 1689-1692 CrossRef Google Scholar

[73] Kienberger R, Goulielmakis E, Uiberacker M, et al. Atomic transient recorder. Nature, 2004, 427: 817-821 CrossRef Google Scholar

[74] Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics. Science, 2008, 320: 1614-1617 CrossRef Google Scholar

[75] Zhao K, Zhang Q, Chini M, et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt Lett, 2012, 37: 3891-3893 CrossRef Google Scholar

[76] Li C, Wang D, Song L, et al. Generation of carrier-envelope phase stabilized intense 1.5 cycle pulses at 1.75 $\upmu $m. Opt Express, 2011, 19: 6783-6789. Google Scholar

[77] Chalus O, Thai A, Bates P K, et al. Six-cycle mid-infrared source with 3.8 $\upmu $J at 100 kHz. Opt Lett, 2010, 35: 3204-3206. Google Scholar

[78] Fuji T, Ishii N, Teisset C Y, et al. Parametric amplification of few-cycle carrier-envelope phase-stable pulses at \linebreak 2. 1 $upmu $m. Opt Lett, 2006, 31: 1103-1105 CrossRef Google Scholar

[79] Gu X, Marcus G, Deng Y, et al. Generation of carrier-envelope-phase-stable 2-cycle 740-$\upmu $J pulses at 2.1-$\upmu $m carrier wavelength. Opt Express, 2009, 17: 62-69. Google Scholar

[80] Agostini P, DiMauro L F. Atoms in high intensity mid-infrared pulses. Contemp Phys, 2008, 49: 179-197 CrossRef Google Scholar

[81] Colosimo P, Doumy G, Blaga C I, et al. Scaling strong-field interactions towards the classical limit. Nature Phys, 2008, 4: 386-389 CrossRef Google Scholar

[82] Itatani J, Levesque J, Zeidler D, et al. Tomographic imaging of molecular orbitals. Nature, 2004, 432: 867-871 CrossRef Google Scholar

[83] Haakestad M W, Fonnum H, Arisholm G, et al. Mid-infrared optical parametric oscillator synchronously pumped by an erbium-doped fiber laser. Opt Express, 2010, 18: 25379-25388 CrossRef Google Scholar

[84] Neely T W, Johnson T A, Diddams S A. High-power broadband laser source tunable from 3.0 $\upmu $m to 4.4 $\upmu $m based on a femtosecond Yb:fiber oscillator. Opt Lett, 2011, 36: 4020-4022. Google Scholar

[85] Brida D, Manzoni C, Marangoni M, et al. Two-cycle light pulses in the near and mid-infrared by PPSLT-based optical parametric amplifiers. In: Proceedings of Conference on Lasers and Electro-Optics, and Conference on Quantum Electronics and Laser Science Conference, Baltimore, 2009. 1-2. Google Scholar

[86] Chu Y, Gan Z, Liang X, et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses. Opt Lett, 2015, 40: 5011-5014 CrossRef Google Scholar

[87] Zhao K, Zhong H, Yuan P, et al. Generation of 120 GW mid-infrared pulses from a widely tunable noncollinear optical parametric amplifier. Opt Lett, 2013, 38: 2159-2161 CrossRef Google Scholar

[88] Popmintchev T, Chen M-C, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science, 2012, 336: 1287-1291 CrossRef Google Scholar

[89] Quan W, Lin Z, Wu M, et al. Classical aspects in above-threshold ionization with a midinfrared strong laser field. Phys Rev Lett, 2009, 103: 093001-1291 CrossRef Google Scholar

[90] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics. Phys Rev Lett, 1961, 7: 118-119 CrossRef Google Scholar

[91] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Opt Lett, 2000, 25: 1210-1212 CrossRef Google Scholar

[92] Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Phys Rev Lett, 2006, 96: 075005-1212 CrossRef Google Scholar

[93] Cavaletto S M, Harman Z, Ott C, et al. Broadband high-resolution X-ray frequency combs. Nature Photon, 2014, 8: 520-523 CrossRef Google Scholar

[94] Depresseux A, Oliva E, Gautier J, et al. Demonstration of a circularly polarized plasma-based soft-X-ray laser. Phys Rev Lett, 2015, 115: 083901-523 CrossRef Google Scholar

[95] Tian C S, Shen Y R. Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy. Proc Natl Acad Sci, 2009, 106: 15148-15153 CrossRef Google Scholar

[96] Cheng J X, Book L D, Xie X S. Polarization coherent anti-Stokes Raman scattering microscopy. Opt Lett, 2001, 26: 1341-1343 CrossRef Google Scholar

[97] Sánchez E J, Novotny L, Xie X S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett, 1999, 82: 4014-4017 CrossRef Google Scholar

[98] Johnson J C, Choi H-J, Knutsen K P, et al. Single gallium nitride nanowire lasers. Nature Mater, 2002, 1: 106-110 CrossRef Google Scholar

[99] Klimov V I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J Phys Chem B, 2000, 104: 6112-6123 CrossRef Google Scholar

[100] Hendry E, Hale P J, Moger J, et al. Coherent nonlinear optical response of graphene. Phys Rev Lett, 2010, 105: 097401-6123 CrossRef Google Scholar

[101] Wang J, Hernandez Y, Lotya M, et al. Broadband nonlinear optical response of graphene dispersions. Adv Mater, 2009, 21: 2430-2435 CrossRef Google Scholar

[102] Fu L, Kane C L, Mele E J. Topological insulators in three dimensions. Phys Rev Lett, 2007, 98: 106803-2435 CrossRef Google Scholar

[103] Chang C Z, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340: 167-170 CrossRef Google Scholar

[104] Tokura Y, Nagaosa N. Orbital physics in transition-metal oxides. Science, 2000, 288: 462-468 CrossRef Google Scholar

[105] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials. Phys Rev Lett, 2008, 101: 047401-468 CrossRef Google Scholar

[106] Campagnola P J, Wei M D, Lewis A, et al. High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys J, 1999, 77: 3341-3349 CrossRef Google Scholar

[107] Kim H-H. Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Process Poly, 2004, 1: 91-110 CrossRef Google Scholar

[108] Momma C, Chichkov B N, Nolte S, et al. Short-pulse laser ablation of solid targets. Opt Commun, 1996, 129: 134-142 CrossRef Google Scholar

[109] Yanik M F, Cinar H, Cinar H N, et al. Neurosurgery: functional regeneration after laser axotomy. Nature, 2004, 432: 822-142 CrossRef Google Scholar

[110] Barsch N, Korber K, Ostendorf A, et al. Ablation and cutting of planar silicon devices using femtosecond laser pulses. Appl Phys A, 2003, 77: 237-242. Google Scholar

[111] Nakata Y, Okada T, Maeda M. Fabrication of dot matrix, comb, and nanowire structures using laserablation by interfered femtosecond laser beams. Appl Phys Lett, 2002, 81: 4239-4241 CrossRef Google Scholar

[112] Küper S, Stuke M. Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV exicimer laser pulses. Appl Phys Lett, 1989, 54: 4-6 CrossRef Google Scholar

[113] Küper S, Stuke M. Ablation of UV-transparent materials with femtosecond UV excimer laser pulses. MRS Proc, 1988, 129: 375-6 CrossRef Google Scholar

[114] Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser. Opt Lett, 1996, 21: 1729-1731 CrossRef Google Scholar

[115] Glezer E N, Milosavljevic M, Huang L, et al. Three-dimensional optical storage inside transparent materials. Opt Lett, 1996, 21: 2023-2025 CrossRef Google Scholar

[116] Watanabe W, Sowa S, Tamaki T, et al. Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser. Jpn J Appl Phys, 2006, 45: L765-L767 CrossRef Google Scholar

[117] Hanada Y, Sugioka K, Midorikawa K. UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing. Opt Express, 2010, 18: 446-450 CrossRef Google Scholar

[118] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices. Nature, 2001, 412: 697-698 CrossRef Google Scholar

[119] Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A, 1996, 63: 109-115 CrossRef Google Scholar

[120] König K, Riemann I, Fritzsche W. Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. Opt Lett, 2001, 26: 819-821 CrossRef Google Scholar

[121] Guo S X, Bourgeois F, Chokshi T, et al. Femtosecond laser nanoaxotomy lab-on-achip for in vivo nerve regeneration studies. Nat Methods, 2008, 5: 531-533 CrossRef Google Scholar

[122] Tirlapur U K, König K. Cell biology - targeted transfection by femtosecond laser. Nature, 2002, 418: 290-291 CrossRef Google Scholar

[123] Juhasz T, Kastis G A, Suarez C, et al. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water. Laser Surg Med, 1996, 19: 23-31 CrossRef Google Scholar

[124] Nakamura K, Sora Y, Yoshikawa H Y, et al. Femtosecond laser-induced crystallization of protein in gel medium. Appl Surf Sci, 2007, 253: 6425-6429 CrossRef Google Scholar

[125] Kaji T, Ito S, Miyasaka H, et al. Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force. Appl Phys Lett, 2007, 91: 023904-6429 CrossRef Google Scholar

[126] Yamaguchi A, Hosokawa Y, Louit G, et al. Nanoparticle injection to single animal cells using femtosecond laser-induced impulsive force. Appl Phys A, 2008, 93: 39-43. Google Scholar

[127] Kuo Y E, Wu C C, Hosokawa Y, et al. Local stimulation of cultured myocyte cells by femtosecond laser-induced stress wave. Appl Phys A, 2010, 101: 597-600 CrossRef Google Scholar

[128] Hosokawa Y, Takabayashi H, Miura S, et al. Nondestructive isolation of single cultured animal cells by femtosecond laser-induced shockwave. Appl Phys A, 2004, 79: 795-798 CrossRef Google Scholar

[129] Dausinger F. Femtosecond pulses for medicine and production technology - overview of a German national project. Proc SPIE, 2002, 4426: 9-16 CrossRef Google Scholar

[130] Bauer T, König J. Applications and perspectives of ultrashort pulsed lasers. Tech Dig LPM2010, 2010, 127. Google Scholar

[131] Tamaki T, Watanabe W, Itoh K. Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm. Opt Express, 2006, 14: 10460-10468 CrossRef Google Scholar

[132] Udem M, Holzwarth R, Hänsch T W. Optical frequency metrology. Nature, 2002, 416: 233-237 CrossRef Google Scholar

[133] Hall J L. Optical frequency measurement: 40 years of technology revolutions. IEEE J Sel Top Quantum Electron, 2000, 6: 1136-1144 CrossRef Google Scholar

[134] Thorpe M J, Moll K D, Jones R J, et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 2006, 311: 1595-1599 CrossRef Google Scholar

[135] Bernhardt B, Ozawa A, Jacquet P, et al. Cavity-enhanced dual-comb spectroscopy. Nature Photon, 2010, 4: 55-57 CrossRef Google Scholar

[136] Bartels A, Diddams S A, Oates C W, et al. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. Opt Lett, 2005, 30: 667-669 CrossRef Google Scholar

[137] Murphy M T, Udem T, Holzwarth R, et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon Not R Astron Soc, 2007, 380: 839-847 CrossRef Google Scholar

[138] Gohle C, Udem T, Herrmann M, et al. A frequency comb in the extreme ultraviolet. Nature, 2005, 436: 234-237 CrossRef Google Scholar

[139] Ideguchi T, Bernhardt B, Guelachvili G, et al. Raman-induced Kerr-effect dual-comb spectroscopy. Opt Lett, 2012, 37: 4498-4500 CrossRef Google Scholar

[140] Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive real-time dual-comb spectroscopy. Nat Commun, 2014, 5: 3375. Google Scholar

[141] Ruehl A, Marcinkevicius A, Fermann M E, et al. 80 W, 120 fs Yb-fiber frequency comb. Opt Lett, 2010, 35: 3015-3017 CrossRef Google Scholar

[142] Hartl I, Schibli T R, Marcinkevicius A, et al. Cavity-enhanced similariton Yb-fiber laser frequency comb: 3$\times $10$^{14 }$W/cm$^{2 }$peak intensity at 136 MHz. Opt Lett, 2007, 32: 2870-2872 CrossRef Google Scholar

[143] Pupeza I, Holzberger S, Eidam T, et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nature Photon, 2013, 7: 608-612 CrossRef Google Scholar

[144] Chvykov V, Rousseau P, Reed S, et al. Generation of 10$^{11}$ contrast 50 TW laser pulses. Opt Lett, 2006, 31: 1456-1458 CrossRef Google Scholar

[145] Bahk S W, Rousseau P, Planchon T A, et al. Generation and characterization of the highest laser intensities (10$^{22}$ W/cm$^{2})$. Opt Lett, 2004, 29: 2837-2839 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号