SCIENTIA SINICA Informationis, Volume 47, Issue 2: 149-170(2017) https://doi.org/10.1360/N112016-00135

Development status and prospects of the Energy Internet}{Development status and prospects of the Energy Internet

More info
  • ReceivedMay 23, 2016
  • AcceptedSep 24, 2016
  • PublishedFeb 6, 2017


The Energy Internet is a new energy ecosystem based on electricity with high penetration of renewable energy, high synergy of multiple energy types, high synergy of energy value chains from supply to demand and from planning to operation, and high participation of stakeholders. In this paper, we discuss the background and significance, basic connotation, dynamic development, current domestic and foreign status, scientific issues, and future development of the Energy Internet. The Energy Internet is based on the fusion of Internet Thinking, advanced information technology, energy industry, synergistic energy network, cyber-physical energy system, and innovative energy business models. It supports the energy revolution in achieving green, coordinated, and efficient development and drives the economic growth.


[1] José G. World Energy Assessment: Energy and the Challenge of Sustainability. New York: United Nations, 2000. Google Scholar

[2] Jefferson M. Sustainable energy development: performance and prospects. Renew Energ, 2006, 31: 571-582 CrossRef Google Scholar

[3] Rifkin J. Third Industrial Revolution: How Lateral Power Is Transforming Energy, the Economy, and the World. New York: Palgrave Macmillan Trade, 2011. 33-72. Google Scholar

[4] Bolla R, Bruschi R, Davoli F, et al. Energy efficiency in the future Internet: a survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE Commun Surv Tut, 2011, 13: 223-244 CrossRef Google Scholar

[5] Bui N, Castellani A P, Casari P, et al. The internet of energy: a web-enabled smart grid system. IEEE Network, 2012, 26: 39-45 CrossRef Google Scholar

[6] Rifkin J. The third industrial revolution: how lateral power is transforming energy, the economy, and the world. Survival, 2012, 2: 67-68. Google Scholar

[7] Lanzisera S, Weber A R, Liao A, et al. Communicating power supplies: bringing the Internet to the ubiquitous energy gateways of electronic devices. IEEE Int Thing J, 2014, 1: 153-160 CrossRef Google Scholar

[8] Sun H B, Guo Q L, Pan Z G, et al. Energy Internet: driving force, review and outlook. Pow Syst Technol, 2015, 39: 3005-3013 [孙宏斌, 郭庆来, 潘昭光, 等. 能源互联网: 驱动力、评述与展望. 电网技术, 2015, 39: 3005-3013]. Google Scholar

[9] Grid 2030: a national vision for electricity's second 100 years. Report. United State Department of Energy Office of Electric Transmission and Distribution, 2003. Google Scholar

[10] Sun H B, Guo Q L, Pan Z G. Energy Internet: concept, architecture and frontier outlook. Autom Electric Pow Syst, 2015, 19: 1-8 [孙宏斌, 郭庆来, 潘昭光. 能源互联网: 理念、架构与前沿展望. 电力系统自动化, 2015, 19: 1-8]. Google Scholar

[11] Duan Q, Sheng W X, Meng X L, et al. Research of energy sub grid for the future Energy Internet. Proc Chin Soc Electr Eng, 2016, 36: 388-398 [段青, 盛万兴, 孟晓丽, 等. 面向能源互联网的新型能源子网系统研究. 中国电机工程学报, 2016, 36: 388-398]. Google Scholar

[12] Zeng M, Zhang X C, Wang L H. Energy supply side reform promoting based on Energy Internet thinking. Electric Pow Constr, 2016, 37: 10-15 [曾鸣, 张晓春, 王丽华. 以能源互联网思维推动能源供给侧改革. 电力建设, 2016, 37: 10-15]. Google Scholar

[13] Yao J G, Gao Z Y, Yang S C. Understanding and prospects of Energy Internet. Autom Electric Pow Syst, 2015, 39: 9-14 [姚建国, 高志远, 杨胜春. 能源互联网的认识和展望. 电力系统自动化, 2015, 39: 9-14]. Google Scholar

[14] Yu X D, Xu X D, Chen S Y, et al. A brief review to integrated energy system and Energy Internet. Trans China Electrotechnical Soc, 2016, 31: 1-13 [余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述. 电工技术学报, 2016, 31: 1-13]. Google Scholar

[15] Gao F. Consideration and exploration of the Energy Internet. Electrical Industry, 2015, 11: 53-55 [高峰. 能源互联网思考与探索. 电器工业, 2015, 11: 53-55]. Google Scholar

[16] Quelhas A, Mccalley J D. A multiperiod generalized network flow model of the U. S. integrated energy system: part I-model description. IEEE Trans Pow Syst, 2007, 22: 829-836. Google Scholar

[17] Gu W, Wu Z, Bo R, et al. Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: a review. Int J Electr Pow Energ Syst, 2014, 54: 26-37 CrossRef Google Scholar

[18] Farhangi H. The path of the smart grid. IEEE Pow Energ Mag, 2010, 8: 18-28. Google Scholar

[19] Baheti R, Gill H. Cyber-physical systems. Impact Contr Technol, 2011, 13: 1-6. Google Scholar

[20] Rajkumar R, Lee I, Sha L, et al. Cyber-physical systems: the next computing revolution. In: Proceedings of the 47th Design Automation Conference, Anaheim, 2010. 731-736. Google Scholar

[21] Kim K D, Kumar P R. Cyber-physical systems: a perspective at the centennial. Proc IEEE, 2012, 100: 1287-1308 CrossRef Google Scholar

[22] Ci S. Energy informatization and Internet-based management and its applications in distributed energy storage system. Proc Chin Soc Electr Eng, 2015, 35: 3643-3648 [慈松. 能量信息化和互联网化管控技术及其在分布式电池储能系统中的应用. 中国电机工程学报, 2015, 35: 3643-3648]. Google Scholar

[23] Building the Energy Internet. Report. The Economist, 2004. Google Scholar

[24] Federation of German Industries (BDI). Internet of Energy: ICT for Energy Markets of the Future. Berlin: Federation of German Industries Publication, 2008. Google Scholar

[25] Schmeck H, Karg L. E-Ernergy -- paving the way for an Internet of energy.Inform Technol, 2010, 52: 55-57. Google Scholar

[26] Goerdeler A. E-Energy-Deutschlands Weg zum Internet der Energie. Heidelberg: Springer-Verlag, 2012. Google Scholar

[27] E-Energy. Federal ministry of economics and energy of Germany, 2013. http://www.e-energy.de/en/index.php. Google Scholar

[28] Ili'C D, Karnouskos S, Silva P G D, et al. A system for enabling facility management to achieve deterministic energy behavior in the smart grid era. In: Proceedings of the International Conference on Smart Grids and Green IT Systems, Barcelona, 2014. 170-178. Google Scholar

[29] European Commission. Mission growth: europe at the lead of the new industrial revolution. Report. 2013. Google Scholar

[30] Geidl M, Favre-Perrod P, Klöckl B, et al. A greenfield approach for future power systems. In: Proceedings of the 41st International Conference on Large Electric Systems, Paris, 2006. Google Scholar

[31] Geidl M, Koeppel G, Favre-Perrod P, et al. Energy hubs for the future. Pow Energ Mag, 2007, 5: 24-30. Google Scholar

[32] Parisio A, Vecchio C D, Vaccaro A. A robust optimization approach to energy hub management. Int J Electr Pow Energ Syst, 2012, 42: 98-104 CrossRef Google Scholar

[33] Shen Z, Liu Z M, Baran M. Power management strategies for the green hub. In: Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, 2012. 1-4. Google Scholar

[34] Real A J D, Arce A, Bordons C. Combined environmental and economic dispatch of smart grids using distributed model predictive control. Int J Electr Pow Energ Syst, 2014, 54: 65-76 CrossRef Google Scholar

[35] Huang A Q. FREEDM system-a vision for the future grid. In: Proceedings of IEEE Power and Energy Society General Meeting, Minnesota, 2010. Google Scholar

[36] Akella R, Meng F, Ditch D, et al. Distributed power balancing for the FREEDM system. In: Proceedings of IEEE International Conference on Smart Grid Communications, Maryland, 2010. 7-12. Google Scholar

[37] Luna A, Lábaque M C, Zygadlo J A, et al. Intelligent energy management of the FREEDM System. In: Proceedings of IEEE Power and Energy Society General Meeting, Minnesota, 2010. Google Scholar

[38] Huang A Q, Crow M L, Heydt G T, et al. The future renewable electric energy delivery and management (FREEDM) system: the Energy Internet. Proc IEEE, 2011, 99: 133-148 CrossRef Google Scholar

[39] Karady G G, Huang A Q, Baran M, et al. FREEDM system: an electronic smart distribution grid for the future. In: Proceedings of Transmission and Distribution Conference and Exposition, Lacombe, 2012. 1-6. Google Scholar

[40] Boyd J. An Internet-inspired electricity grid. IEEE Spectrum, 2013, 50: 12-14. Google Scholar

[41] Abe R, Taoka H, Mcquilkin D. Digital grid: communicative electrical grids of the future. IEEE Trans Smart Grid, 2011, 2: 399-410 CrossRef Google Scholar

[42] Zha Y B, Zhang T, Tan S R, et al. Understanding and thinking of the Energy Internet. Natl Def Sci Technol, 2012, 33: 1-6 [查亚兵, 张涛, 谭树人, 等. 关于能源互联网的认识与思考.国防科技, 2012, 33: 1-6]. Google Scholar

[43] Directive opinions on promoting the development of the Internet+ Smart Energy. Report. 2016 [关于推进``互联网+''智慧能源发展的指导意见. 2016]. Google Scholar

[44] The Thirteenth Five-year Plan for the National Economic and Social Development of the People's Republic of China. 2015 [中华人民共和国国民经济和社会发展第十三个五年规划纲要. 2016]. Google Scholar

[45] Han Y D, Yu Y X, Huang Q L, et al. 2015 Report on the Development of China's Strategic Emerging Industries. Chapter 13. Chinese Academy of Engineering, 2015 [韩英铎, 余贻鑫, 黄其励, 等. 中国战略性新兴产业发展报告2015. 第13章. 中国工程院, 2015]. Google Scholar

[46] Cao J W, Yang M B, Zhang D H, et al. Energy Internet -- an infrastructure for Cyber-Energy integration. South Pow Syst Technol, 2014, 8: 1-10 [曹军威, 杨明博, 张德华, 等. 能源互联网---信息与能源的基础设施一体化. 南方电网技术, 2014, 8: 1-10]. Google Scholar

[47] Wang J Y, Meng K, Cao J W, et al. Information technology for Energy Internet: a survey. J Comput Res Dev, 2015, 52: 1109-1126 [王继业, 孟坤, 曹军威, 等. 能源互联网信息技术研究综述. 计算机研究与发展, 2015, 52: 1109-1126]. Google Scholar

[48] Ma Z, Zhou X X, Shang Y W, et al. Exploring the concept, key technologies and development model of Energy Internet. Pow Syst Technol, 2015, 39: 3014-3022 [马钊, 周孝信, 尚宇炜, 等. 能源互联网概念、关键技术及发展模式探索. 电网技术, 2015, 39: 3014-3022]. Google Scholar

[49] Zeng M, Yang Y Q, Liu D N, et al. "Generation-grid-load-storage" coordinative optimal operation mode of Energy Internet and key technologies. Pow Syst Technol, 2016, 40: 114-124 [曾鸣, 杨雍琦, 刘敦楠, 等. 能源互联网``源-网-荷-储''协调优化运营模式及关键技术. 电网技术, 2016, 40: 114-124]. Google Scholar

[50] Liu J Z. Basic issues of the utilization of large-scale renewable power with high security and efficiency.Proc Chin Soc Electr Eng, 2013, 33: 1-8 [刘吉臻. 大规模新能源电力安全高效利用基础问题. 中国电机工程学报, 2013, 33: 1-8]. Google Scholar

[51] Xue Y S. Energy Internet or comprehensive energy network? J Mod Pow Syst Clean Energ, 2015, 3: 297-301. Google Scholar

[52] Dong Z Y, Zhao J H, Fu S, et al. From smart grid to Energy Internet: basic concept and research framework. Autom Electr Pow Syst, 2014, 38: 1-11 [董朝阳, 赵俊华, 福拴, 等. 从智能电网到能源互联网: 基本概念与研究框架. 电力系统自动化, 2014, 38: 1-11]. Google Scholar

[53] Liu Z Y. Global Energy Internet. Beijing: China Electric Power Press, 2015 [刘振亚. 全球能源互联网. 北京: 中国电力出版社, 2015]. Google Scholar

[54] Liu Z Y. Build the global Energy Internet, and promote the development of clean and green energy. State Grid, 2015, 6: 4-7 [刘振亚. 构建全球能源互联网, 推动能源清洁绿色发展. 国家电网, 2015, 6: 4-7]. Google Scholar

[55] Chen Q X, Liu D N, Lin J, et al. Business models and market mechanisms of Energy Internet (I). Pow Syst Technol, 2015, 39: 3050-3056 [陈启鑫, 刘敦楠, 林今, 等. 能源互联网的商业模式与市场机制(一). 电网技术, 2015, 39: 3050-3056]. Google Scholar

[56] Liu D N, Zeng M, Huang R L, et al. Business models and market mechanisms of Energy Internet (II). Pow Syst Technol, 2015, 39: 3057-3063 [刘敦楠, 曾鸣, 黄仁乐, 等. 能源互联网的商业模式与市场机制(二). 电网技术, 2015, 39: 3057-3063]. Google Scholar

[57] Zhou H M, Liu G Y, Liu C Q. Study on the Energy Internet technology framework. Electr Pow, 2014, 47: 140-144 [周海明, 刘广一, 刘超群. 能源互联网技术框架研究. 中国电力, 2014, 47: 140-144]. Google Scholar

[58] Yang F, Bai C F, Zhang Y B. Research on the value and implementation framework of Energy Internet. Proc Chin Soc Electr Eng, 2015, 35: 3495-3502 [杨方, 白翠粉, 张义斌. 能源互联网的价值与实现架构研究. 中国电机工程学报, 2015, 35: 3495-3502]. Google Scholar

[59] Zhao H, Cai W, Wang J F, et al. An architecture design and topological model of intergrid. Trans China Electrotechnical Soc, 2015, 30: 30-36 [赵海, 蔡巍, 王进法, 等. 能源互联网架构设计与优化. 电工技术学报, 2015, 30: 30-36]. Google Scholar

[60] Cai W, Zhao H, Wang J F, et al. A unifying network of topological model of Energy Internet macro-scope structure. Proc Chin Soc Electr Eng, 2015, 35: 3503-3510 [蔡巍, 赵海, 王进法, 等. 能源互联网宏观结构的同一网络拓扑模型. 中国电机工程学报, 2015, 35: 3503-3510]. Google Scholar

[61] Zha Y B, Zhang T, Huang Z, et al. Analysis of Energy Internet key technologies. Sci Sin Inform, 2014, 44: 702-713 [查亚兵, 张涛, 黄卓, 等. 能源互联网关键技术分析. 中国科学: 信息科学, 2014, 44: 702-713]. Google Scholar

[62] Tian S M, Luan W P, Zhang D X, et al. Technical forms and key technologies on Energy Internet. Proc Chin Soc Electr Eng, 2015, 35: 3482-3494 [田世明, 栾文鹏, 张东霞, 等. 能源互联网技术形态与关键技术. 中国电机工程学报, 2015, 35: 3482-3494]. Google Scholar

[63] Yan T S, Cheng H Z, Zeng P L, et al. System architecture and key technologies of Energy Internet. Pow Syst Technol, 2016, 40: 105-113 [严太山, 程浩忠, 曾平良, 等. 能源互联网体系架构及关键技术. 电网技术, 2016, 40: 105-113]. Google Scholar

[64] Cheng F, Xu M F, Xu Z X, et al. Development of Energy Internet and key technology analysis. Electrotechnics Electr, 2015, 213: 1-3 [程帆, 徐鸣飞, 徐志翔, 等. 能源互联网发展及关键技术分析. 电工电气, 2015, 213: 1-3]. Google Scholar

[65] Zhou X X, Chen S Y, Lu Z X. Review and prospect for power system development and related technologies: a concept of three-generation power systems. Proc Chin Soc Electr Eng, 2013, 33: 1-11 [周孝信, 陈树勇, 鲁宗相. 电网和电网技术发展的回顾与展望---试论三代电网. 中国电机工程学报, 2013, 33: 1-11]. Google Scholar

[66] Yan Y. The new electric distribution network in the Energy Internet. Electr Age, 2012: 39-40 [晏阳. 能源互联网下的新型配电网. 电气时代, 2012: 39-40]. Google Scholar

[67] Liu D C, Peng S C, Liao Q F, et al. Outlook of future integrated distribution system morphology orienting to Energy Internet. Pow Syst Technol. 2015, 39: 3023-3034 [刘涤尘, 彭思成, 廖清芬, 等. 面向能源互联网的未来综合配电系统形态展望. 电网技术, 2015, 39: 3023-3034]. Google Scholar

[68] MA Z, Zhou X X, Shang Y W, et al. Form and development trend of future distribution system. Proc Chin Soc Electr Eng, 2015, 35: 1289-1298 [马钊, 周孝信, 尚宇炜, 等. 未来配电系统形态及发展趋势. 中国电机工程学报, 2015, 35: 1289-1298]. Google Scholar

[69] Wang Y Z, Zhao B, Yuan Z C, et al. Study of the application of VSC-based DC technology in Energy Internet. Proc Chin Soc Electr Eng, 2015, 35: 3551-3560 [王一振, 赵彪, 袁志昌, 等. 柔性直流技术在能源互联网中的应用. 中国电机工程学报, 2015, 35: 3551-3560]. Google Scholar

[70] Yu S H, Sun Y, Niu X N, et al. Energy Internet system based on distributed renewable energy generation. Electr Pow Autom Eq, 2010, 30: 104-108 [于慎航, 孙莹, 牛晓娜, 等. 基于分布式可再生能源发电的能源互联网系统. 电力自动化设备, 2010, 30: 104-108]. Google Scholar

[71] Zhang T, Zhang F X, Zhang Y. Study on energy management system of Energy Internet. Pow Syst Technol, 2016, 40: 146-155 [张涛, 张福兴, 张彦. 面向能源互联网的能量管理系统研究. 电网技术, 2016, 40: 146-155]. Google Scholar

[72] Cao J W, Wang J Y, Ming Y Y, et al. Software-defined information and communication technology for Energy Internet. Proc Chin Soc Electr Eng, 2015, 35: 3649-3655 [曹军威, 王继业, 明阳阳, 等. 软件定义的能源互联网信息通信技术研究. 中国电机工程学报, 2015, 35: 3649-3655]. Google Scholar

[73] Ma J H, Zhang D X, Liu Y D, et al. Study on standard framework of Energy Internet. Pow Syst Technol, 2015, 39: 3035-3039 [马君华, 张东霞, 刘永东, 等. 能源互联网标准体系研究. 电网技术, 2015, 39: 3035-3039]. Google Scholar

[74] Alario-Franco M A. High temperature superconducting materials. Adv Mater, 2004, 7: 229-232. Google Scholar

[75] Chu C W. High-temperature superconducting materials: a decade of impressive advancement of Tc. IEEE Trans Appl Supercon, 1997, 7: 80-89 CrossRef Google Scholar

[76] Zhang Q C, Callanan R, Das M K, et al. SiC power devices for microgrids. IEEE Trans Pow Electr, 2010, 25: 2889-2896 CrossRef Google Scholar

[77] Qian Z M, Zhang J M, Sheng K. Status and development of power semiconductor devices and its applications. Proc Chin Soc Electr Eng, 2014, 34: 5149-5161 [钱照明, 张军明, 盛况. 电力电子器件及其应用的现状和发展. 中国电机工程学报, 2014, 34: 5149-5161]. Google Scholar

[78] Tamaki T, Walden G G, Sui Y, et al. Optimization of on-State and switching performances for 15-20-kV 4H-SiC IGBTs. IEEE Trans Electr Dev, 2008, 55: 1920-1927 CrossRef Google Scholar

[79] Peftitsis D, Tolstoy G, Antonopoulos A, et al. High-power modular multilevel converters with SiC JFETs. IEEE Trans Pow Electr, 2012, 27: 2148-2155. Google Scholar

[80] Palmour J W, Zhang J Q, Das M K, et al. SiC power devices for smart grid systems. In: Proceedings of the 9th International Power Electronics Conference, Sapporo, 2010. 1006-1013. Google Scholar

[81] Cao J W, Meng K, Wang J Y, et al. An Energy Internet and energy routers. Sci Sin Inform, 2014, 44: 714-727 [曹军威, 孟坤, 王继业, 等. 能源互联网与能源路由器. 中国科学: 信息科学, 2014, 44: 714-727]. Google Scholar

[82] Cao Y, Yuan L Q, Zhu S M, et al. Parameter design of energy router orienting Energy Internet. Pow Syst Technol, 2015, 39: 3094-3101 [曹阳, 袁立强, 朱少敏, 等. 面向能源互联网的配网能量路由器关键参数设计. 电网技术, 2015, 39: 3094-3101]. Google Scholar

[83] Yi P, Zhu T, Jiang B, et al. Deploying energy router in an Energy Internet based electric vehicles. IEEE Trans Veh Technol, 2016, 65: 1-2155 CrossRef Google Scholar

[84] Kapoor R, Shukla A, Demetriades G. State of art of power electronics in circuit breaker technology. In: Proceedings of IEEE Energy Conversion Congress and Exposition, Raleigh, 2012. 615-622. Google Scholar

[85] Wim V D M, Mouton T. Solid-state transformer topology selection. In: Proceedings of IEEE International Conference on Industrial Technology, Churchill, 2009. 1-6. Google Scholar

[86] Chen G, Hao M, Xu Z Q, et al. Review of high voltage direct current cables. J Pow Energ Syst, 2015, 1: 9-21. Google Scholar

[87] Flourentzou N, Agelidis V G, Demetriades G D. VSC-based HVDC power transmission systems: an overview. IEEE Trans Pow Electr, 2009, 24: 592-602 CrossRef Google Scholar

[88] Tang G F, He Z Y, Pang H, et al. Basic topology and key devices of the five-terminal DC grid. J Pow Energ Syst, 2015, 1: 22-35 CrossRef Google Scholar

[89] Fisher T M, Farley K B, Gao Y, et al. Electric vehicle wireless charging technology: a state-of-the-art review of magnetic coupling systems. Wirel Pow Transf, 2014, 1: 87-96 CrossRef Google Scholar

[90] Kalwar K A, Aamir M, Mekhilef S. Inductively coupled power transfer (ICPT) for electric vehicle charging-a review. Renew Sustain Energ Rev, 2015, 47: 462-475 CrossRef Google Scholar

[91] Ci S, Li H J, Chen X, et al. The cornerstone of Energy Internet: research and practice of distributed energy storage technology. Sci Sin Inform, 2014, 44: 762-773 [慈松, 李宏佳, 陈鑫, 等. 能源互联网重要基础支撑: 分布式储能技术的探索与实践. 中国科学: 信息科学, 2014, 44: 762-773]. Google Scholar

[92] Ribeiro P F, Johnson B K, Crow M L, et al. Energy storage systems for advanced power applications. Proc IEEE, 2001, 89: 1744-1756 CrossRef Google Scholar

[93] Luo X, Wang J H, Dooner M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energ, 2015, 137: 511-536 CrossRef Google Scholar

[94] Luo N, Li J L. Research progress of energy storage technology in power system. Pow Syst Clean Energ, 2012, 28: 71-79 [骆妮, 李建林. 储能技术在电力系统中的研究进展. 电网与清洁能源, 2012, 28: 71-79]. Google Scholar

[95] Kempton W, Tomić J. Vehicle-to-grid power fundamentals: calculating capacity and net revenue. J Pow Sources, 2005, 144: 268-279 CrossRef Google Scholar

[96] Kempton W, Tomić J. Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy. J Pow Sources, 2005, 144: 280-294 CrossRef Google Scholar

[97] Jia Y Y, Ramachandaramurthy V K, Kang M T, et al. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renew Sustain Energ Rev, 2015, 49: 365-385 CrossRef Google Scholar

[98] Seta P L, Lerch E. Strategies for the interconnection of off-shore power systems to shore using AC or DC. In: Pro-\linebreak ceedings of International Conference on Power System Technology, Zhejiang, 2010. 1-6. Google Scholar

[99] Ruiz N, Cobelo I, Oyarzabal J. A direct load control model for virtual power plant management. IEEE Trans Pow Syst, 2009, 24: 959-966 CrossRef Google Scholar

[100] Pand\v{z}ić H, Kuzle I, Capuder T. Virtual power plant mid-term dispatch optimization. Appl Energ, 2013, 101: 134-141 CrossRef Google Scholar

[101] Pan Z, Guo Q, Sun H. Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow. Appl Energ, 2015, 167: 230-243. Google Scholar

[102] Xu X, Jia H J, Chiang H D, et al. Dynamic modeling and interaction of hybrid natural gas and electricity supply system in microgrid. IEEE Trans Pow Syst, 2014, 30: 1-10. Google Scholar

[103] Siano P. Demand response and smart grids -- a survey. Renew Sustain Energ Rev, 2014, 30: 461-478 CrossRef Google Scholar

[104] Albadi M H, El-Saadany E F. A summary of demand response in electricity markets. Electric Power Syst Res, 2008, 78: 1989-1996 CrossRef Google Scholar

[105] Vivien M. Biology: the big challenges of big data. Nature, 2013, 498: 255-60 CrossRef Google Scholar

[106] Naimi A I, Westreich D J. Big data: a revolution that will transform how we live, work, and think. Inform Commun Soc, 2013, 17: 181-183. Google Scholar

[107] Chen M, Mao S W, Liu Y H. Big data: a survey. Mobile Netw Appl, 2014, 19: 171-209 CrossRef Google Scholar

[108] Cao J W, Yuan Z D, Ming Y Y, et al. Survey of big data analysis technology for Energy Internet. South Pow Syst Technol, 2015, 9: 1-12 [曹军威, 袁仲达, 明阳阳, 等. 能源互联网大数据分析技术综述. 南方电网技术, 2015, 9: 1-12]. Google Scholar

[109] Zhang D X, Miao X, Liu L P, et al. Research on development strategy for smart grid big data. Proc Chin Soc Electr Eng, 2015, 35: 2-12 [张东霞, 苗新, 刘丽平, 等. 智能电网大数据技术发展研究. 中国电机工程学报, 2015, 35: 2-12]. Google Scholar

[110] Huang Y H, Zhou X X. Knowledge model for electric power big data based on ontology and semantic web. J Pow Energ Syst, 2015, 1: 19-27 CrossRef Google Scholar

[111] Swan M. Blockchain : blueprint for a new economy. Sebastopol: O'Reilly, 2015. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有