logo

SCIENTIA SINICA Informationis, Volume 47, Issue 1: 47-57(2017) https://doi.org/10.1360/N112016-00136

What kind of plant is better for control? An analysis and conjecture using the degree of controllability}{What kind of plant is better for control? An analysis and conjecture using the degree of controllability

More info
  • ReceivedMay 25, 2016
  • AcceptedAug 2, 2016
  • PublishedDec 14, 2016

Abstract

From the perspective of integrated design, a new control topic is proposed by analyzing many common social phenomena. Which kind of controlled plant is better for control? Focus is on the key point that ``if such a plant exists, what properties does it need to have?" In this paper, the concept of ``better for control" is defined for the linear / linearized plant, which implies that the closed-loop control effect is better and controller gain is smaller with the same control strategy. A theoretical framework and features for the new control concept are introduced. Furthermore, contrology conjecture of the degree of controllability (DOC) is investigated as to which concept could depict the difference level of controllability between the controlled plants under the same control conditions. Based on the preliminary framework, we also present the research situation and prospect on the field.


Funded by

国家自然科学基金(61174038)

国家自然科学基金(61573186)

国家自然科学基金(61673213)

国家自然科学基金(51507080)

中央高校基本科研业务费专项资金(3091501 1104)


References

[1] Grigoriadis K M, Zhu G, Skelton R E. Optimal redesign of linear systems. J Dyn Syst-T ASME, 1996, 118: 598-605 CrossRef Google Scholar

[2] Haftka R T, Hallauer W L, Martinovic Z N. Enhanced vibration controllability by minor structural modifications. AIAA J, 1985, 23: 1260-1266 CrossRef Google Scholar

[3] Zhou P, Wang F Y, Chen W, et al. Optimal construction and control of flexible manipulators: a case study based on LQR output feedback. Mechatronics, 2001, 11: 59-77 CrossRef Google Scholar

[4] Haftka R T, Martinovic Z N, Hallauer W L, et al. Sensitivity of optimized control systems to minor structural modifications. In: Proceedings of the 26th Structures, Structural Dynamics and Material Conference, Orlando, 1985. 15-17. Google Scholar

[5] Guo L. Understanding the role and capability of feedback. Autom Panorama, 2003, 1: 1-3 [郭雷. 关于反馈的作用及能力的认识. 自动化博览, 2003, 1: 1-3]. Google Scholar

[6] Zhang Y, Guo L. A limit to the capability of feedback. IEEE Trans Auto Control, 2002, 47: 687-692 CrossRef Google Scholar

[7] Ma H B. Further results on limitations to the capability of feedback. Int J Control, 2008, 81: 21-42 CrossRef Google Scholar

[8] Huang C, Guo L. On feedback capability for a class of semiparametric uncertain systems. Automatica, 2012, 48: 873-878 CrossRef Google Scholar

[9] Ashari A E, Nikoukhah R, Campbell S L. Effects of feedback on active fault detection. Automatica, 2012, 48: 866-872 CrossRef Google Scholar

[10] Zhong R. The Selected Works of Winner. Shanghai: Shanghai Translation Publishing House, 1978 [钟韧. 维纳著作选. 上海: 上海译文出版社, 1978]. Google Scholar

[11] Qian X S. Engineering Cybernetics. Shanghai: Shanghai Jiao Tong University Press, 2007 [钱学森. 工程控制论. 上海: 上海交通大学出版社, 2007]. Google Scholar

[12] Li B S. The degree of controllability of attitude control system. Aerosp Control, 1984, 2: 1-8 [李宝绶. 姿控系统的能控度. 航天控制, 1984, 2: 1-8]. Google Scholar

[13] Soloway D I, Ouzts P J, Wolpert D H, et al. The role of guidance, navigation, and control in hypersonic vehicle multidisciplinary design and optimization. In: Proceedings of 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, 2009. 7329. Google Scholar

[14] Zhang Y, Lu Y P, Liu Y B, et al. Integrated control design of hypersonic vehicle. J Aerosp Pow, 2012, 12: 2724-2732 [张勇, 陆宇平, 刘燕斌, 等. 高超声速飞行器控制一体化设计. 航空动力学报, 2012, 12: 2724-2732]. Google Scholar

[15] Yang Z Q, Yin M H, Xia Y P, et al. The exploration of key aerodynamic parameters for an integrated design of wind turbine blades. In: Proceedings of the 33rd Chinese Control Conference, Nanjing, 2014. 7072-7076 [杨志强, 殷明慧, 夏亚平, 等. 考虑风力机一体化设计的叶片气动外形关键参数的探索. 第33 届中国控制大会, 南京, 2014. 7072-7076]. Google Scholar

[16] Yang Z Q, Yin M H, Chen X Y, et al. Multi-AOA optimization of variable-Speed wind turbine airfoils. In: Proceedings of TENCON 2016, IEEE Region 10 Conference, Singapore, 2016. Google Scholar

[17] Yang Z, Yin M, Xu Y, et al. A multi-point method considering the maximum power point tracking dynamic process for aerodynamic optimization of variable-Speed wind turbine blades. Energies, 2016, 9: 425-872 CrossRef Google Scholar

[18] Zhou P, Wang F, Chen W, et al. Optimal construction and control of flexible manipulators: a case study based on LQR output feedback. Mechatronics, 2001, 11: 59-77 CrossRef Google Scholar

[19] Haftka R T, Hallauer W L, Martinovic Z N. Enhanced vibration controllability by minor structural modifications. AIAA J, 1985, 23: 1260-1266 CrossRef Google Scholar

[20] Shirazi F A, Grigoriadis K M, Viassolo D. An integrated approach towards structural and LPV controller design in wind turbines. In: Proceedings of the American Control Conference, Canada, 2012. 5789-5794. Google Scholar

[21] Shirazi F A, Grigoriadis K M, Viassolo D. Wind turbine integrated structural and LPV control design for improved closed-loop performance. Int J Control, 2012, 85: 1178-1196 CrossRef Google Scholar

[22] Ji B C, Cong S. Optimal link group selection for triple inverted - pendulum. Comput Simulation, 2006, 23: 258-261 [姬北辰, 丛爽. 三级倒立摆系统最优摆杆长度组合选取的研究. 计算机仿真, 2006, 23: 258-261]. Google Scholar

[23] Lundström P, Skogestad S, Wang Z Q. Performance weight selection for H-infinity and $\mu$-control methods. Trans Inst Meas Control, 1991, 13: 241-252 CrossRef Google Scholar

[24] Moser A N. Designing controllers for flexible structures with H-infinity/mu-synthesis. IEEE Control Syst, 1993, 13: 79-89 CrossRef Google Scholar

[25] Xia Y P, Yin M H, Yang Z Q, et al. Investigation on the degree of controllability of wind turbines for the maximum power point tracking. In: Proceedings of the 33rd Chinese Control Conference, Nanjing, 2014. 2336-2341 [夏亚平, 殷明慧, 杨志强, 等. 关于最大功率点跟踪的风力机的能控度分析. 第33届中国控制大会, 南京, 2014. 2336-2341]. Google Scholar

[26] Xia Y P, Cai C X, Yin M H, et al. The effects of the distance to uncontrollability in redundant optimal control. In: Proceedings of the 33rd Chinese Control Conference, Nanjing, 2014. 9016-9021. Google Scholar

[27] Xia Y, Yin M, Cai C, et al. A new measure of the degree of controllability for linear system with external disturbance and its application to wind turbines. J Vib Control, 2016. doi: 10.1177/1077546316651558. Google Scholar

[28] Xia Y P, Cai C X, Yin M H, et al. The effects of redundant control inputs in finite-time optimal control. J Syst Sci Complex, 2016: 1-12. Google Scholar

[29] Zou Y, Cai C X. Integrated design viewpoint exploration: concept and approach of system controlity design. J Nanjing Univ Sci Technol, 2011, 35: 427-430 [邹云, 蔡晨晓. 一体化设计新视角: 系统的控制性设计概念与方法. 南京理工大学学报, 2011, 35: 427-430]. Google Scholar

[30] Viswanathan C N, Longman R W, Likins P W. A degree of controllability definition: fundamental concepts and application to modal systems. J Guid Control Dynam, 1984, 7: 222-230 CrossRef Google Scholar

[31] Hyounsurk R, Youngjin P. Actuator and exciter placement for flexible structures. J Guid Control Dynam, 1997, 20: 850-856 CrossRef Google Scholar

[32] Muller P C, Weber H I. Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems. Automatica, 1972, 8: 237-246 CrossRef Google Scholar

[33] Eising R. Between controllable and uncontrollable. Syst Control Lett, 1984, 4: 263-264 CrossRef Google Scholar

[34] Kalman R E. Canonical structure of linear dynamical systems. Proc Natl Acad Sci U S A, 1962, 48: 596-600 CrossRef Google Scholar

[35] Paige C C. Properties of numerical algorithms related to computing controllability. IEEE Trans Autom Control, 1981, AC-26: 130-138. Google Scholar

[36] Nguyen K S, Do D T. The structured distance to non-surjectivity and its application to calculating the controllability radius of descriptor systems. J Mathem Analys Appl, 2012, 388: 272-281 CrossRef Google Scholar

[37] Zhang H, Sun Y X. Bode integrals and laws of variety in linear control systems. In: Proceedings of the American Control Conference, Colorado, 2003. 66-70. Google Scholar

[38] Zhang H. Information descariptions and approaches in control systems. Dissertation for Ph.D. Degree. Hanzhou: Zhejiang University, 2003 [章辉. 控制系统中的信息描述与方法. 博士学位论文. 杭州: 浙江大学, 2003]. Google Scholar

[39] Callier F M, Desoer C A. Linear System Theory. New York: Springer Science & Business Media, 2012. Google Scholar

[40] Guillemin E A. Theory of Linear Physical Systems. New York: Dover, 2013. Google Scholar

[41] Brockett R W. Finite dimensional linear systems. IEEE Trans Automat Contr Ac, 1970, 17: 753-754. Google Scholar

[42] Xia Y P. What kind of plant is better for control? --an exploration via the degree of controllability. Dissertation for Ph.D. Degree. Nanjing: Nanjing University of Science and Technology, 2016 [夏亚平. 怎样的受控对象更好控制? ---基于能控度视角的探索. 博士学位论文. 南京: 南京理工大学, 2016]. Google Scholar

[43] Chen Q Z. Theory and Design of Linear System. Beijing: Science Press, 1988 [陈启宗. 线性系统理论与设计. 北京: 科技出版社, 1988]. Google Scholar

[44] Longman R W, Alfrined K T. Actuator placemant from degree of controllability criteria for regular slewing of flexible spacecraft. Acta Astronaut, 1981, 8: 703-718 CrossRef Google Scholar

[45] Zhang X M, Shao C J, Shen S W. Optimal placement of sensors and actuators for vibration control of elastic linkage mechanisms. J Vibration Engineering, 2001, 14: 211-214 [张宪民, 邵长健, 沈允文. 弹性连杆机构振动主动控制中作动器与传感器的位置优化. 振动工程学报, 2001, 14: 211-214]. Google Scholar

[46] He C, Gu S N. Modal degree of controllability and its computation methods for a structural control system. J Vib Eng, 1993, 6: 229-237 [何程, 顾松年. 结构控制系统的模态能控度及其计算方法. 振动工程学报, 1993, 6: 229-237]. Google Scholar

[47] Bai B E, Lin L X. The relative degree of controllability of attitude control system and the selection of installation parameters of actuator. Control Eng, 1982, 1 [白拜尔, 林来兴. 姿态控制系统的相对能控度和执行机构安装参数的选择. 控制工程, 1982, 1]. Google Scholar

[48] Viswanathan C N, Longman R W, Likins P W. A definition of degree of controllability-a criterion for actuator placement. In: Proceedings of dynamics and control of large flexible spacecraft, Blacksburg, 1979. 369-381. Google Scholar

[49] Laskin R A, Longman R W, Likins P W. A definition of the degree of controllability for fuel-optimal systems. In: Proceedings of dynamics and control of large flexible spacecraft, Blacksburg, 1981. 15-17. Google Scholar

[50] Klein G, Linberg R E, Longman R W. Computation of degree of controllability via system discretization. J Guid Control Dynam, 1982, 5: 583-588 CrossRef Google Scholar

[51] Duan Z S, Huang L, Yao Y, et al. On the effects of redundant control inputs. Automatica, 2012, 48: 2168-2174 CrossRef Google Scholar

[52] Duan Z S, Huang L, Yang Y. The effects of redundant control inputs in optimal control. Sci China Inf Sci, 2009, 52: 1973-1981 CrossRef Google Scholar

[53] Duan Z S, Huang L, Jiang Z P. On the effects of redundant control inputs in discrete-time systems. J Syst Sci Math Sci, 2012, 32: 1193-1206. Google Scholar

[54] Zhang X L. Investigation on maximum power point tracking of wind turbine under turbulence. Dissertation for Ph.D. Degree. Nanjing: Nanjing University of Science and Technology, 2014 [张小莲. 风机最大功率点跟踪的湍流影响机理研究与性能优化. 博士学位论文. 南京: 南京理工大学, 2014]. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号