logo

SCIENTIA SINICA Informationis, Volume 47, Issue 3: 374-384(2017) https://doi.org/10.1360/N112016-00166

A novel covert communication system based on symmetric ${\alpha}$-stable distribution

More info
  • ReceivedJul 4, 2016
  • AcceptedAug 31, 2016
  • PublishedJan 12, 2017

Abstract

A novel structure for covert communication is proposed in this study. The correlation coefficient of two adjacent symmetric $\alpha$-stable (S$\alpha$S) noise sequences is modulated by the binary message sequence to achieve a covert communication system. In order to reduce the correlation of the modulated signal in the time domain, the modulated signal is scrambled by an interleaver. To verify the covertness of the proposed communication system, an improved circulation spectral density function is employed to detect whether the transmitted signal exists. The simulation results show that the proposed system has strong concealment. Moreover, the bit error rate (BER) performance is simulated and analyzed. The results show that the system has a good performance.


Funded by

国家自然科学基金--浙江两化融合联合基金(U1509219)

国家自然科学基金(61471322)

国家自然科学基金(61402416)

国家自然科学基金(61531009)

广东省科技计划项目(2016A010101003)


References

[1] Wei H, Zheng B, Hou X. Compressive channel sensing based on random pilot for physical layer communication security. In: Proceedings of IEEE 22nd Wireless and Optical Communication Conference, Chongqing, 2013. 693-698. Google Scholar

[2] Mukherjee A, Fakoorian S A A, Huang J, et al. Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun Surv Tut, 2014, 16: 1550-1573 CrossRef Google Scholar

[3] Zhao D F, Zhu T L, Xue R. Parallel decoding of Turbo codes in covert communications. J Appl Sci, 2012, 30: 461-465 [赵旦峰, 朱铁林, 薛睿. 隐蔽通信中的Turbo 码并行译码. 应用科学学报, 2012, 30: 461-465]. Google Scholar

[4] Narayanan R M, Chuang J. Covert communications using heterodyne correlation random noise signals. Electron Lett, 2007, 43: 1211-1212 CrossRef Google Scholar

[5] Salberg A B, Hanssen A. Secure digital communications by means of stochastic process shift keying: principles and properties. In: Proceedings of Conference Record of the 33rd Asilomar Conference on Signals, Systems, and Computers, Asker, 1999. 48-53. Google Scholar

[6] Shao M, Nikias C L. Signal processing with fractional lower order moments: stable processes and their applications. Proc IEEE, 1993, 81: 986-1010 CrossRef Google Scholar

[7] Nikias C L, Shao M. Signal Processing With Alpha-Stable Distributions and Applications. Hoboken: John Wiley & Sons, 1995. Google Scholar

[8] Gulati K, Evans B L, Andrews J G, et al. Statistics of co-channel interference in a field of Poisson and Poisson-Poisson clustered interferers. IEEE Trans Signal Process, 2010, 58: 6207-6222 CrossRef Google Scholar

[9] Lee J, Tepedelenlioglu C. Distributed detection in coexisting large-scale sensor networks. IEEE Sens J, 2014, 14: 1028-1034 CrossRef Google Scholar

[10] Zhou Y F, Li R P, Zhao Z F, et al. On the $\alpha$-stable distribution of base stations in cellular networks. IEEE Commun Lett, 2015, 19: 1750-1753 CrossRef Google Scholar

[11] Li R P, Zhao Y F, Qi C, et al. Understanding the traffic nature of mobile instantaneous messaging in cellular networks: a revisiting to $\alpha$-stable models. IEEE J Mag, 2015, 3: 1416-1422. Google Scholar

[12] Chiaraviglio L, Cuomo F, Maisto M, et al. What is the best spatial distribution to model base station density? A deep dive into two European mobile networks. IEEE Access, 2016, 4: 1434-1443 CrossRef Google Scholar

[13] Laguna-Sanchez G, Lopez-Guerrero M. On the use of alpha-stable distributions in noise modeling for PLC. IEEE Trans Power Delivery, 2015, 30: 1863-1870 CrossRef Google Scholar

[14] Achim A, Basarab A, Tzagkarakis G, et al. Reconstruction of ultrasound RF echoes modeled as stable random variables. IEEE Trans Comput Imag, 2015, 1: 86-95 CrossRef Google Scholar

[15] Shen X, Zhang H, Xu Y, et al. Observation of alpha-stable noise in the laser gyroscope data. IEEE Sens J, 2016, 16: 1998-2003 CrossRef Google Scholar

[16] Chen J, Nunez-Yanez J L, Achim A. Bayesian video super-resolution with heavy-tailed prior models. IEEE Trans Circ Syst Video Tech, 2014, 24: 905-914 CrossRef Google Scholar

[17] Cek M E, Savaci F A. Stable non-Gaussian noise parameter modulation in digital communication. Electron Lett, 2009, 45: 1256-1257 CrossRef Google Scholar

[18] Gonzalez J G, Paredes J L, Arce G R. Zero-order statistics: a mathematical framework for the processing and characterization of very impulsive signals. IEEE Trans Signal Process, 2006, 54: 3839-3851 CrossRef Google Scholar

[19] He J A, Pei C Q, Pu Y Y. Cyclic spectrum analysis of BPSK under a non-Guassian model. J Lanzhou Univ (Nat Sci), 2012, 48: 133-138 [何继爱, 裴承全, 蒲阳阳. 非Gauss模型下BPSK的循环谱分析. 兰州大学学报(自然科学版), 2012, 48: 133-138]. Google Scholar

[20] Zhao C H, Yang W C, Ma S. Research on communication signal modulation recognition based on the generalized second-order cyclic statistics. J Commun, 2011, 32: 144-150 [赵春晖, 杨伟超, 马爽. 基于广义二阶循环统计量的通信信号调制识别研究. 通信学报, 2011, 32: 144-150]. Google Scholar

[21] Zhang X L, Xu J T, Chen Y S. Detection of BPSK DS signal based on cyclic spectrum correlation technology. Inf Tech, 2004, 28: 30-32 [张晓林, 徐建太, 陈源胜. 基于循环谱理论的BPSK直扩信号检测. 信息技术, 2004, 28: 30-32]. Google Scholar

[22] Zhao G L, Wu Y N. An analysis of the interleavers for Turbo codes. J Appl Sci, 2002, 20: 38-41 [赵光玲, 吴乐南. 几种用于Turbo码的交织器分析. 应用科学学报, 2002, 20: 38-41]. Google Scholar

[23] Zha D F, Shu T, Chen D, et al. Robust blind shallow water channel equalizer based on fractional lowes order impulsivenoise model. J Commun, 2008, 29: 133-138 [査代奉, 舒彤, 陈丁, 等. 基于分数低阶脉冲噪声模型的浅海水声信道盲均衡方法. 通信学报, 2008, 29: 133-138]. Google Scholar

[24] Xu Z J, Wang K, Gong Y, et al. Structure and performance analysis of an S$\alpha$S-based digital modulation system. IET Commun, 2016, 10: 1329-1339 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号