SCIENTIA SINICA Informationis, Volume 46, Issue 12: 1694-1710(2016) https://doi.org/10.1360/N112016-00247

Display technologies in virtual reality systems

More info
  • ReceivedOct 19, 2016
  • AcceptedNov 11, 2016
  • PublishedDec 14, 2016


With the development of information technology, the demand for high-end virtual reality (VR) techniques and such devices are increasing rapidly. And one of the key points to achieve high performance of VR devices is a high-quality display system. In this paper, the state-of-the-art display techniques in VR are discussed with their features analyzed and compared. Particularly, as the main form of VR display, head-mounted displays (HMDs) are discussed in detail. And by analyzing the hot fields in HMD technology, the special considerations and aim of display techniques in VR are expounded. The last part is the prospect of display technology in VR systems.

Funded by






[1] Cheng D W, Wang Y T. Eyepiece. China Patent, 101609208B, 2009-12-23 [程德文, 王涌天. 目镜. 国家发明专利, 101609208B, 2009-12-23]. Google Scholar

[2] Cheng D, Wang Y, Hua H. Large field-of-view and high resolution free-form head-mounted display. Proc SPIE, 2010, 7652: 76520D CrossRef Google Scholar

[3] Cheng D, Wang Y, Hua H, et al. Design of a wide-angle, lightweight head-mounted display using free-form optics tiling. Opt Lett, 2011, 36: 2098-2100 CrossRef Google Scholar

[4] Cheng D, Wang Y, Hua H, et al. Free-form optics enable lightweight, high-performance head-mounted displays. Laser Focus World, 2012, 48: 67-69. Google Scholar

[5] Zhao Q L, Wang Z Q, Mu G G, et al. Hybrid refractive/diffractive eyepiece design for head-mounted display. Acta Photonica Sin, 2003, 32: 1495-1498 [赵秋玲, 王肇圻, 母国光, 等. 用于头盔显示器的折/衍混合目镜设计. 光子学报, 2003, 32: 1495-1498]. Google Scholar

[6] Sun Q, Liu R, Piao R G, et al. Application of plastic aspherical elements in head mounted 3D display. Opt Precis Eng, 2005, 13: 47-52 [孙强, 柳荣, 朴仁官, 等. 塑料非球面透镜在头盔3D显示中的应用. 光学精密工程, 2005, 13: 47-52]. Google Scholar

[7] Okuyama A, Yamazaki S. US Patent, 5 706 136, 1998-01-06. Google Scholar

[8] Cheng D, Wang Y, Hua H, et al. Design of an optical see-through headmounted display with a low f-number and large field of view using a free-form prism. Appl Opt, 2009, 48: 2655-2668 CrossRef Google Scholar

[9] Rolland J P, Yoshida A, Davis A L. High-resolution inset head-mounted display. Appl Opt, 1998, 37: 4183-4193 CrossRef Google Scholar

[10] Song W, Cheng D, Deng Z. Design and assessment of a wide FOV and highresolution optical tiled head-mounted display. Appl Opt, 2015, 54: E15-E22 CrossRef Google Scholar

[11] Cheng D, Wang Y, Hua H. Euro Patent, 2564259 B1, 2015-01-21. Google Scholar

[12] Shiwa S, Omura K, Kishino F. Proposal for a 3D display with accommodative compensation: 3DDAC. J Soc Inf Display, 1996, 4: 255-261 CrossRef Google Scholar

[13] Shibata T, Kawai T, Ohta K, et al. Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence. J Soc Inf Display, 2005, 13: 665-671 CrossRef Google Scholar

[14] Love G D, Hoffman D M, Hands P J W, et al. High-speed switchable lens enables the developement of a volumetric stereoscopic display. Opt Express, 2011, 19: 8045-8050 CrossRef Google Scholar

[15] Liu S, Cheng D, Hua H. An optical see-through head mounted display with addressable focal planes. In: Proceedings of the 7th IEEE/ACM International Symposium on Mixed Augmented Reality. Washington: IEEE Computer Society, 2008. 33-42. Google Scholar

[16] Hu X, Hua H. High-resolution optical see-through multifocal-plane head-mounted display using freeform optics. Opt Express, 2014, 22: 13896-13903 CrossRef Google Scholar

[17] Rolland J P, Krueger M W, Goon A A. Dynamic focusing in head-mounted displays. Proc SPIE, 1999, 3639: 463-470 CrossRef Google Scholar

[18] Cheng D, Wang Q, Wang Y, et al. Lightweight spatialy multiplexed dual focal-plane head-mounted display using two freeform prisms. Chin Opt Lett, 2013, 11: 031201-470 CrossRef Google Scholar

[19] Johnson P V, Parnell J A Q, Kim J, et al. Dynamic lens and monovision 3D displays to improve viewer comfort. arXiv:1512.09163. Google Scholar

[20] Konrad R, Cooper E A, Wetzstein G. Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, Santa Clara, 2016. 1211-1220. Google Scholar

[21] Ando T, Yamasaki K, Okamoto M, et al. Headmounted display using a holographic optical element. In: Three-Dimensional Television, Video, and Display Technologies. New York: Springer, 2002. 67-100. Google Scholar

[22] Takatsuka Y, Yabu H, Yoshimoto K, et al. Retinal projection display using diffractive optical element. In: Proceedings of the 10th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kitakyushu, 2014. 403-406. Google Scholar

[23] von Waldkirch M, Lukowicz P, Troster G. Defocusing simulations on a retinal scanning display for quasi accommodationfree viewing. Opt Express, 2003, 11: 3220-3233 CrossRef Google Scholar

[24] von Waldkirch M, Lukowicz P, Troster G. Oscillating fluid lens in coherent retinal projection displays for extending depth of focus. Opt Commun, 2005, 253: 407-418 CrossRef Google Scholar

[25] McQuaide S C, Seibel E J, Kelly J P, et al. A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror. Displays, 2003, 24: 65-72 CrossRef Google Scholar

[26] Schowengerdt B T, Seibel E J, Kelly J P. Binocular retinal scanning laser display with integrated focus cues for ocular accommodation. Proc SPIE, 2003, 5006: 1-9. Google Scholar

[27] Kim D W, Kwon Y M, Kim S K, et al. Analysis of a head-mounted display-type multifocus display system using a laser scanning method. Opt Eng, 2011, 50: 103-108. Google Scholar

[28] Takahashi H, Yamada K. Retinal projection type super multi-view head-mounted display. Proc SPIE, 2014, 9012: 90120L-108 CrossRef Google Scholar

[29] Davis W O, Brown D, Ma Y, et al. Evolution of MEMS scanning mirrors for laser projection in compact consumer electronics. Proc SPIE, 2010, 7594: 75940A-108 CrossRef Google Scholar

[30] Takahashi H, Hirooka S. Stereoscopic see-through retinal projection head-mounted display. Proc SPIE, 2008, 6803: 68031N-108 CrossRef Google Scholar

[31] Wetzstein G, Lanman D, Hirsch M, et al. Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans Graph, 2012, 31: 13-15. Google Scholar

[32] Song W, Wang Y, Cheng D, et al. Light field head-mounted display with correct focus cue using micro structure array. Chin Opt Lett, 2014, 12: 39-42. Google Scholar

[33] Hua H, Javidi B. A 3D integral imaging optical see-through headmounted display. Opt Express, 2014, 22: 13484-13491 CrossRef Google Scholar

[34] Lanman D, Luebke D. Near-eye light field displays. ACM SIGGRAPH Talks, 2013, 32: 2504-2507. Google Scholar

[35] Huang F C, Chen K, Wetzstein G. The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues. ACM Trans Graph, 2015, 34: 1-12. Google Scholar

[36] Fergason J L. US Patent, 5621572, 1997-04-15. Google Scholar

[37] Gao C Y, Biocca F, Hua H, et al. An ultra-light and compact design implementation of head-mounted projective displays. In: Proceedings of IEEE Virtual Reality Conference, Yokohama, 2001. 175-182. Google Scholar

[38] Zhang R, Hua H. Characterizing polarization management in a p-HMPD system. Appl Opt, 2008, 47: 512-522 CrossRef Google Scholar

[39] Inami M, Kawakami N, Sekiguchi D, et al. Visuo-haptic display using head-munted projector. In: Proceedings of IEEE Virtual Reality Conference, New Brunswick, 2000. 233-240. Google Scholar

[40] Geng Z. High resolution volumetric three-dimensional display--state of the art in information technology. Sci Tech Rev, 2007, 25: 21-26 [耿征. 真三维高清晰度显示技术---信息显示领域的重要发展方向. 科技导报, 2007, 25: 21-26]. Google Scholar

[41] Reisa G A, Haviga P R, Hefta E L, et al. Color and shape perception on the Perspecta 3D volumetric display. Proc SPIE, 2007, 6558: 65580I-522 CrossRef Google Scholar

[42] Lin Y F, Liu X, Liu X D, et al. Three-dimensional volumetric display system utilizing a rotating two-dimensional LED array. Acta Optica Sinica, 2003, 23: 1158-1162 [林远芳, 刘旭, 刘向东, 等. 基于旋转二维发光二极管阵列的体三维显示系统. 光学学报, 2003, 23: 1158-1162]. Google Scholar

[43] Fan Q J, Li L, Shen C L, et al. Research on volumetric 3D imaging system based on rotating helix screen. Trans Microsyst Tech, 2009, 28: 117-120 [樊琼剑, 李 莉, 沈春林, 等. 基于旋转螺旋屏的三维立体成像系统研究. 传感器与微系统, 2009, 28: 117-120]. Google Scholar

[44] Song W, Zhu Q, Liu Y, et al. Omnidirectional-view three-dimensional display based on rotating selective-diffusing screen and multiple mini-projectors. Appl Opt, 2015, 54: 4154-4160 CrossRef Google Scholar

[45] Zhang W D. Research on the three-dimentional display. Dissertation for Ph.D. Degree. Tianjin: Tianjin University, 2010 [张未冬. 三维计算全息显示技术的研究. 博士学位论文. 天津: 天津大学, 2010]. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号