logo

SCIENTIA SINICA Informationis, Volume 47, Issue 10: 1381-1394(2017) https://doi.org/10.1360/N112016-00296

Design and measurement of user experience oriented auto-stereoscopic 3D display based on optical lens

More info
  • ReceivedApr 14, 2017
  • AcceptedMay 2, 2017
  • PublishedSep 13, 2017

Abstract

In order address the issues of crosstalk, poor user experiences, and difficult assessment of image quality in auto-stereoscopic 3D displays, we propose an easy-to-implement measurement method called fault-width-assessment for auto-stereoscopic 3D applications. Based on this method, we perform a study on the influence of camera group setups and multi-view image arrangements during the image fusion process. For scenes with multiple users and a non-fixed view, we propose various schemes for camera setups and multi-view image arrangement, which contribute to improving the user experience. Finally, cross-experimental comparisons and applications of the user experience tests are implemented, which are ultimately helpful for choosing a reasonable proposal.


Funded by

国家自然科学基金(61303127)

四川省科技厅科技支撑计划项目(2017TJPT0200,2017KZ0023,2017GZ0186)


Acknowledgment

感谢Carlos等[16]的前期研究结果对本文引导, 感谢四川长虹集团股份有限公司提供的裸眼3D实验平台和软件设计指导.


References

[1] Feng H Z, Chen B X, Zhang Z C. Study on the effect and comfort of multi-view autostereoscopic display. Cable Television Technol, 2015, 11: 61--63. Google Scholar

[2] Zhan Z C. Design and research of naked-eye 3D mobile video equipment. Dissertation for M.S. Degree. Nanchang: Nanchang University, 2013. 25--34. Google Scholar

[3] Kong L S, Nan J S, Xun X C. Research status quo of flat 3-D display technology. Chinese J Optic Appl Optic, 2009, 2: 112--118. Google Scholar

[4] Liu L Q. Design and implementation of auto stereoscopic 3D interactive display based on gesture. Dissertation for M.S. Degree. Beijing: Beijing University of Technology, 2014. 6--18. Google Scholar

[5] Liang F Y, Deng S X, Yang Y Y. Research on effect assess method for glassless stereoscopic display. J Image Graph, 2007, 8: 1407--1411. Google Scholar

[6] Xie Y T, Su X H, Zhen J W, et al. Key properties of autostereoscopic display. Chinese J Liq Cryst Disp, 2015, 10: 888--893. Google Scholar

[7] Kim J, Kim T, Lee S. Quality assessment of perceptual crosstalk in autostereoscopic display. In: Proceedings of IEEE International Conference on Image Processing, Paris, 2014. 3484--3487. Google Scholar

[8] Kim T, Kim J, Kim S Y. Perceptual Crosstalk Prediction on Autostereoscopic 3D Display. IEEE Trans Circuits Syst Video Technol, 2017, 27: 1450-1463 CrossRef Google Scholar

[9] Choi H J. Analysis on the 3D crosstalk in stereoscopic display. In: Proceedings of SPIE 7848, Holography, Diffractive Optics, and Applications IV, Beijing, 2010. 384--396. Google Scholar

[10] Lee C, Seo G, Han H. et al. Auto-stereoscopic 3D displays with reduced crosstalk. Opt Press, 2011, 19: 24762--24774. Google Scholar

[11] Wang Z Y, Hou C P. Crosstalk elimination in multi-view autostereoscopic display based on polarized lenticular lens array. Chin Phys B, 2015, 24: 309--314. Google Scholar

[12] Zhao W X, Wang Q H, Wang A H. Autostereoscopic display based on two-layer lenticular lenses. Opt Lett, 2010, 35: 4127-4129 CrossRef ADS Google Scholar

[13] Zeng X M, Tian H, Huang Z Q. A method to minimize the crosstolk in eye-tracking auto-stereoscopic display by rearranging sub-pixels. J Optoelectron Laser, 2013, 1: 146--151. Google Scholar

[14] Wang J, Liang H, Fan H. High-quality autostereoscopic display with spatial and sequential hybrid control. Appl Opt, 2013, 52: 8549-8553 CrossRef ADS Google Scholar

[15] Li D, Zang D, Qiao X. 3D Synthesis and Crosstalk Reduction for Lenticular Autostereoscopic Displays. J Display Technol, 2015, 11: 939-946 CrossRef ADS Google Scholar

[16] González C, Martínez Sotoca J, Pla F. Synthetic content generation for auto-stereoscopic displays. Multimed Tools Appl, 2014, 72: 385-415 CrossRef Google Scholar

[17] Yu X B, Sang X Z, Chen D, et al. Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch. Chin Opt Lett, 2014, 12: 38--46. Google Scholar

[18] Kasano M, Ichihashi K, Asai Y. 51.3: Design for Reducing Autostereoscopic Display Crosstalk using a Liquid Crystal Gradient-index Lens. SID Symposium Digest Technical Papers, 2014, 45: 743-746 CrossRef Google Scholar

  • Figure 1

    Illustration of lenticular auto-stereoscopic display

  • Figure 2

    (Color online) Fault-width-assessment method

  • Figure 3

    (Color online) Sickness curve of fault-width image

  • Figure 4

    (Color online) Developing of lenticular auto-stereoscopic pictures

  • Figure 5

    Setups of cameras. (a) Planner focus; (b) planner non-focus; (c)cylindrical focus; (d) cylindrical non-focus

  • Figure 6

    (Color online) Sub-pixels mapping matrix of 8 viewpoint example

  • Figure 7

    Multiple viewpoints arrangement. (a) Rising zigzag; (b) declinezigzag; (c) triangle wave; (d) half arc

  • Figure 8

    (Color online) Fault-width of different viewpoints arrangement

  • Figure 9

    (Color online) Fault-width of planner-non-focus setup

  • Figure 10

    (Color online) Fault-width of planner-focus setup

  • Figure 11

    (Color online) Fault-width of cylindrical-non-focus setup

  • Figure 12

    (Color online) Fault-width of cylindrical-focus setup

  • Figure 13

    (Color online) Rating of user experience. (a) Planner non-focus; (b) cylindrical focus

  • Table 1   Sickness parameters of fault-width image
    User Vertigo 1 Vertigo 2 Vertigo 3 Vertigo 4 Vertigo 5
    1 3.31 5.05 8.35 11.48 14.44
    2 2.61 5.57 6.44 9.05 12.53
    3 1.04 1.57 2.26 3.83 7.13
    4 1.22 2.96 5.22 8.00 13.92
    5 3.48 4.52 6.26 7.66 9.74
    6 3.13 4.35 5.74 7.66 9.05
    7 1.22 1.74 2.09 4.35 5.92
    Average 2.29 3.68 5.20 7.43 10.39
  • Table 2   Interference measurement of planar setup without focus
    No. View-point arrangement Fault-width value Reverse width Actual view points
    1 12345678 4.76 1 8
    2 56781234 4.81 1 8
    3 34567654 0.69 4 5
    4 67852345 2.26 2 7
    5 13456753 1.42 3 6
  • Table 3   Interference measurement of planar setup with focus
    No. View-point arrangement Fault-width value Reverse width Actual view points
    6 12345678 3.18 1 8
    7 56781234 3.16 1 8
    8 34567654 0.42 4 5
    9 67852345 1.31 2 7
    10 13456753 0.86 3 6
  • Table 4   Interference measurement of cylindrical setup without focus
    No. View-point arrangement Fault-width value Reverse width Actual view points
    11 12345678 5.45 1 8
    12 56781234 5.52 1 8
    13 34567654 0.71 4 5
    14 67852345 2.30 2 7
    15 13456753 1.45 3 6
  • Table 5   Interference measurement of cylindrical setup with focus
    No. View-point arrangement Fault-width value Reverse width Actual view points
    16 12345678 5.42 1 8
    17 56781234 5.45 1 8
    18 34567654 0.65 4 5
    19 67852345 2.35 2 7
    20 13456753 1.51 3 6

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1