logo

SCIENTIA SINICA Informationis, Volume 47, Issue 10: 1316-1333(2017) https://doi.org/10.1360/N112017-00089

Channel measurements and models for high-speed train wireless communication systems in tunnel scenarios: a survey

More info
  • ReceivedMay 5, 2017
  • AcceptedJun 22, 2017
  • PublishedOct 16, 2017

Abstract

The rapid development of high-speed trains (HSTs) has introduced new challenges for HST wireless communication systems. Realistic HST channel models play a critical role in designing and evaluating HST communication systems. Because of length limitations, the bounds of tunnels, and waveguide effects, the channel characteristics in tunnel scenarios are very different from those in other HST scenarios. Therefore, accurate tunnel channel models that consider both large-scale and small-scale fading characteristics are essential for HST communication systems. Furthermore, certain characteristics of tunnel channels have not been investigated sufficiently. This article provides a comprehensive review of measurement systems for tunnels and presents tunnel channel models using various modeling methods. Finally, the future directions for HST tunnel channel measurement and modeling are discussed.


Funded by

国家自然科学基金(61371110,61210002)

信威通信技术有限公司合作项目(11131701)


References

[1] IMT-2020 Promotion Group. 5G Visions and Requirements. White Paper. http://www.imt-2020.cn/en/documents/listByQuery?currentPage=1&content=. Google Scholar

[2] Wang C X, Haider F, Gao X, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122--130. Google Scholar

[3] Liu Y, Ghazal A, Wang C X. Channel measurements and models for high-speed train wireless communication systems in tunnel scenarios: a survey. Sci China Inf Sci, 2017, 60: 101301 CrossRef Google Scholar

[4] Ai B, He R, Zhong Z D, et al. Radio wave propagation scene partitioning for high-speed rails. Int J Antenn Propag, 2012, 2012: 1--7. Google Scholar

[5] Wang C-X, Wu S B, Bai L, et al. Recent advances and future challenges for massive MIMO channel measurements and models. Sci China Inf Sci, 2016, 59: 021301. Google Scholar

[6] Ghazal A, Wang C X, Ai B, et al. A non-stationary wideband MIMO channel model for high-mobility intelligent transportation systems. IEEE Trans Intell Transport Syst, 2015, 16: 885--897. Google Scholar

[7] Fokum D T, Frost V S. A Survey on Methods for Broadband Internet Access on Trains. IEEE Commun Surv Tutorials, 2010, 12: 171-185 CrossRef Google Scholar

[8] Wang C X, Ghazal A, Ai B. Channel Measurements and Models for High-Speed Train Communication Systems: A Survey. IEEE Commun Surv Tutorials, 2016, 18: 974-987 CrossRef Google Scholar

[9] Hrovat A, Kandus G, Javornik T. A Survey of Radio Propagation Modeling for Tunnels. IEEE Commun Surv Tutorials, 2014, 16: 658-669 CrossRef Google Scholar

[10] Guan K, Zhong Z, Alonso J I. 4 GHz in a realistic subway tunnel environment. IEEE Trans Veh Technol, 2012, 61: 834-837 CrossRef Google Scholar

[11] Briso-Rodriguez C, Cruz J M, Alonso J I. Measurements and Modeling of Distributed Antenna Systems in Railway Tunnels. IEEE Trans Veh Technol, 2007, 56: 2870-2879 CrossRef Google Scholar

[12] Guan K, Zhong Z D, Ai B. Statistic modeling for propagation in tunnels based on distributed antenna systems. In: Proceedings of Antennas and Propagation Society International Symposium, Florida, 2013. 1920--1921. Google Scholar

[13] Mahmoud S F, Wait J R. Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels. Radio Sci, 1974, 9: 1147-1158 CrossRef ADS Google Scholar

[14] Porrat D. Radio propagation in hallways and streets for UHF communications. Dissertation for Ph.D. Degree. California: Stanford University, 2002. Google Scholar

[15] Zhang J C, Tao C, Liu L, et al. A study on channel modeling in tunnel scenario based on propagation-graph theory. In: Proceedings of IEEE 83rd Vehicular Technology Conference (VTC'16-Spring), Nanjing, 2016. 1--5. Google Scholar

[16] Hwang Y, Zhang Y P, Kouyoumjian R G. Ray-optical prediction of radio-wave propagation characteristics in tunnel environments. 1. Theory. IEEE Trans Antennas Propagat, 1998, 46: 1328-1336 CrossRef ADS Google Scholar

[17] Emami Forooshani A, Noghanian S, Michelson D G. Characterization of Angular Spread in Underground Tunnels Based on the Multimode Waveguide Model. IEEE Trans Commun, 2014, 62: 4126-4133 CrossRef Google Scholar

[18] Dudley D G. Wireless Propagation in Circular Tunnels. IEEE Trans Antennas Propagat, 2005, 53: 435-441 CrossRef ADS Google Scholar

[19] Didascalou D, Maurer J, Wiesbeck W. Subway tunnel guided electromagnetic wave propagation at mobile communications frequencies. IEEE Trans Antennas Propagat, 2001, 49: 1590-1596 CrossRef ADS Google Scholar

[20] Zhang Y P, Hwang Y. Enhancement of rectangular tunnel waveguide model. In: Proceedings of Asia-Pacific Microwave Conference (APMC'97), Hong Kong, 1997. 197--200. Google Scholar

[21] Emslie A, Lagace R, Strong P. Theory of the propagation of UHF radio waves in coal mine tunnels. IEEE Trans Antennas Propagat, 1975, 23: 192-205 CrossRef ADS Google Scholar

[22] Rana M M, Mohan A S. Segmented-Locally-One-Dimensional-FDTD Method for EM Propagation Inside Large Complex Tunnel Environments. IEEE Trans Magn, 2012, 48: 223-226 CrossRef ADS Google Scholar

[23] Taflove A, Hagness S C. Computational Electrodynamics: the Finite-Difference Time-Domain Method. 3rd ed. Norwood: Artech House, 2005. Google Scholar

[24] Ying Wang , Safavi-Naeini S, Chaudhuri S K. A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation. IEEE Trans Antennas Propagat, 2000, 48: 743-754 CrossRef ADS Google Scholar

[25] Wang H, Yu F R, Zhu L. Finite-State Markov Modeling for Wireless Channels in Tunnel Communication-Based Train Control Systems. IEEE Trans Intell Transp Syst, 2014, 15: 1083-1090 CrossRef Google Scholar

[26] Aikio P, Gruber R, Vainikainen P. Wideband radio channel measurements for train tunnels. In: Proceedings of the 48th IEEE Vehicular Technology Conference, Ottawa, 1998. 460--464. Google Scholar

[27] Guan K, Ai B, Zhong Z. Measurements and Analysis of Large-Scale Fading Characteristics in Curved Subway Tunnels at 920 MHz, 2400 MHz, and 5705 MHz. IEEE Trans Intell Transp Syst, 2015, 16: 2393-2405 CrossRef Google Scholar

[28] Zhang Y P. Novel model for propagation loss prediction in tunnels. IEEE Trans Veh Technol, 2003, 52: 1308-1314 CrossRef Google Scholar

[29] Kim Y M, Jung M S, Chin Y O, et al. Analysis of radio-wave propagation characteristics in curved tunnel. Electrom Eng Soc, 2002, 13: 1017--1024. Google Scholar

[30] He R S, Zhong Z D, Briso C. Broadband channel long delay cluster measurements and analysis at 2.4 GHz in subway tunnels. In: Proceedings of IEEE 73rd Vehicular Technology Conference (VTC'11-Spring), Yokohama, 2011. 1--5. Google Scholar

[31] Pardo J M G, Lienard M, Nasr A, et al. Wideband analysis of large scale and small scale fading in tunnels. In: Proceedings of the 8th International Conference on ITS Telecommunications (ITST'08), Phuket, 2008. 270--273. Google Scholar

[32] Lienard M, Degauque P, Baudet J. Investigation on MIMO channels in subway tunnels. IEEE J Select Areas Commun, 2003, 21: 332-339 CrossRef Google Scholar

[33] Cai X, Yin X, Cheng X. An Empirical Random-Cluster Model for Subway Channels Based on Passive Measurements in UMTS. IEEE Trans Commun, 2016, 64: 3563-3575 CrossRef Google Scholar

[34] Jia Y L, Zhao M, Zhou W Y, et al. Measurement and statistical analysis of 1.89 GHz radio propagation in a realistic mountain tunnel. In: Proceedings of International Conference on Wireless Communications & Signal Processing (WCSP'15), Nanjing, 2015. 1--5. Google Scholar

[35] Zhang L, Fernandez J R, Briso-Rodriguez C, et al. Broadband radio communications in subway stations and tunnels. In: Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP'15), Lisbon, 2015. 1--5. Google Scholar

[36] Li J, Zhao Y, Zhang J. Radio channel measurements and analysis at 2.4/5GHz in subway tunnels. China Commun, 2015, 12: 36-45 CrossRef Google Scholar

[37] Zhang Y P, Jiang Z R, Ng T S. Measurements of the propagation of UHF radio waves on an underground railway train. IEEE Trans Veh Technol, 2000, 49: 1342-1347 CrossRef Google Scholar

[38] Molina-Garcia-Pardo J M, Lienard M, Nasr A. On the Possibility of Interpreting Field Variations and Polarization in Arched Tunnels Using a Model for Propagation in Rectangular or Circular Tunnels. IEEE Trans Antennas Propagat, 2008, 56: 1206-1211 CrossRef ADS Google Scholar

[39] Kim Y M, Jung M, Lee B. Analysis of radio wave propagation characteristics in rectangular road tunnel at 800 MHz and 2.4 GHz. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, Columbus, 2003. 1016--1019. Google Scholar

[40] Bashir S. Effect of Antenna Position and Polarization on UWB Propagation Channel in Underground Mines and Tunnels. IEEE Trans Antennas Propagat, 2014, 62: 4771-4779 CrossRef ADS Google Scholar

[41] Ai B, Guan K, Zhong Z. Measurement and Analysis of Extra Propagation Loss of Tunnel Curve. IEEE Trans Veh Technol, 2016, 65: 1847-1858 CrossRef Google Scholar

[42] Savic V, Ferrer-Coll J, Angskog P. Measurement Analysis and Channel Modeling for TOA-Based Ranging in Tunnels. IEEE Trans Wireless Commun, 2015, 14: 456-467 CrossRef Google Scholar

[43] Li G K, Ai B, Guan K, et al. Path loss modeling and fading analysis for channels with various antenna setups in tunnels at 30 GHz band. In: Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP'16), Davos, 2016. 1--5. Google Scholar

[44] Ruisi He , Zhangdui Zhong , Bo Ai . Analysis of the Relation Between Fresnel Zone and Path Loss Exponent Based on Two-Ray Model. Antennas Wirel Propag Lett, 2012, 11: 208-211 CrossRef ADS Google Scholar

[45] Hrovat A, Kandus G, Javornik T. Four-slope channel model for path loss prediction in tunnels at 400 MHz. IET MicroW Antenn Propag, 2010, 4: 571--582. Google Scholar

[46] Guan K, Zhong Z, Ai B. Modeling of the Division Point of Different Propagation Mechanisms in the Near-Region Within Arched Tunnels. Wireless Pers Commun, 2013, 68: 489-505 CrossRef Google Scholar

[47] Marcuvitz N. Waveguide Handbook. New York: Maraw-Hill, 1951. Google Scholar

[48] Kwon H, Kim Y, Lee B. Characteristics of radio propagation channels in tunnel environments: a statistical analysis. In: Proceedings of Antennas and Propagation Society International Symposium, Sendai, 2004. 2995--2998. Google Scholar

[49] Molina-Garcia-Pardo J M, Lienard M, Degauque P. Propagation in tunnels: experimental investigations and channel modeling in a wide frequency band for MIMO applications. EURASIP J Wirel Commun Netw, 2009, 2009: 560--571. Google Scholar

[50] Didascalou D, Maurer J, Wiesbeck W. Subway tunnel guided electromagnetic wave propagation at mobile communications frequencies. IEEE Trans Antennas Propagat, 2001, 49: 1590-1596 CrossRef ADS Google Scholar

[51] Cheng L, Zhang P. Influence of dimension change on radio wave propagation in rectangular tunnels. In: Proceedings of the 5th Conference on Wireless Communications, Networking and Mobile Computing, Beijing, 2009. 1--3. Google Scholar

[52] Wang S. Radio wave attenuation character in the confined environments of rectangular mine tunnel. Modern Appl Sci, 2010, 4: 65--70. Google Scholar

[53] Zhang C-S, Guo L-F. Research on propagation characteristics of electromagnetic wave in tunnels with arbitrary cross sections. In: Proceedings of the 2nd International Conference on Future Computer and Communication, Wuhan, 2010. 22--25. Google Scholar

[54] Zhou C M, Jacksha R. Modeling and measurement of wireless channels for underground mines. In: Proceedings of IEEE International Symposium on Antennas and Propagation (APSURSI), Puerto Rico, 2016. 1253--1254. Google Scholar

[55] Cheng L F, Zhang L L, Li J. Influence of mine tunnel wall humidity on electromagnetic waves propagation. Int J Antenn Propag, 2012, 2012: 1--5. Google Scholar

[56] Sun Z, Akyildiz I. Channel modeling and analysis for wireless networks in underground mines and road tunnels. IEEE Trans Commun, 2010, 58: 1758-1768 CrossRef Google Scholar

[57] Mariage P, Lienard M, Degauque P. Theoretical and experimental approach of the propagation of high frequency waves in road tunnels. IEEE Trans Antennas Propagat, 1994, 42: 75-81 CrossRef ADS Google Scholar

[58] Huo Y, Xu Z, Zheng H D, et al. Effect of antenna on propagation characteristics of electromagnetic waves in tunnel environments. In: Proceedings of Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics, Shanghai, 2009. 268--271. Google Scholar

[59] Han X, Wang S, Fang T, et al. Propagation character of electromagnetic wave of the different transmitter position in mine tunnel. In: Proceedings of International Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan, 2009. 530--533. Google Scholar

[60] Rissafi Y, Talbi L, Ghaddar M. Experimental Characterization of an UWB Propagation Channel in Underground Mines. IEEE Trans Antennas Propagat, 2012, 60: 240-246 CrossRef ADS Google Scholar

[61] Kermani M H, Kamarei M. A ray-tracing method for predicting delay spread in tunnel environments. In: Proceedings of IEEE International Conference on Personal Wireless Communications, Hyderabad, 2000. 538--542. Google Scholar

[62] Zhang Y P, Hong H J. Ray-Optical Modeling of Simulcast Radio Propagation Channels in Tunnels. IEEE Trans Veh Technol, 2004, 53: 1800-1808 CrossRef Google Scholar

[63] Zheng H D, Nie X Y. GBSB model for MIMO channel and its spacetime correlation analysis in tunnel. In: Proceedings of International Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan, 2009. 1--8. Google Scholar

[64] Avazov N, Patzold M. A Novel Wideband MIMO Car-to-Car Channel Model Based on a Geometrical Semi-Circular Tunnel Scattering Model. IEEE Trans Veh Technol, 2016, 65: 1070-1082 CrossRef Google Scholar

[65] Bernado L, Roma A, Paier A, et al. In-tunnel vehicular radio channel characterization. In: Proceedings of IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest, 2011. 15--18. Google Scholar

[66] Wang H W, Yu F R, Zhu L, et al. Finite-state markov modeling of tunnel channels in comminication-based train control systems. In: Proceedings of IEEE International Conference on Communications Budapest, 2013. 5047--5051. Google Scholar

[67] Yao S H, Wu X L. Modeling for MIMO wireless channels in mine tunnels. In: Proceedings of International Conference on Electric Information and Control Engineering (ICEICE), Wuhan, 2011. 520--523. Google Scholar

[68] Ye X K, Cai X S, Wang H W, et al. Tunnel and non-tunnel channel characterization for high-speed-train scenarios in LTE-A networks. In: Proceeding of IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, 2016. 1--5. Google Scholar

[69] Ranjany A, Misraz P, Dwivediz B, et al. Channel modeling of wireless communication in underground coal mines. In: Proceedings of the 8th International Conference on Communication Systems and Networks (COMSNETS), Bangalore, 2016. 1--2. Google Scholar

[70] Molina-Garcia-Pardo J M, Lienard M, Stefanut P, et al. Modeling and understanding MIMO propagation in tunnels. J Commun, 2009, 4: 241--247. Google Scholar

[71] Minghua J. A modified method for predicting the radio propagation characteristics in tunnels. In: Proceedings of the 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), Wuhan, 2011. 1--4. Google Scholar

[72] Masson E, Combeau P, Berbineau M, et al. Radio wave propagation in arched cross section tunnels simulations and measurements. J Commun, 2009, 4: 276--283. Google Scholar

[73] Choudhury B, Jha R. A refined ray tracing approach for wireless communications inside underground mines and metrorail tunnels. In: Proceeding of IEEE Applied Electromagnetics Conference (AEMC), Kolkata, 2011. 1--4. Google Scholar

[74] Hairoud S, Combeau P, Pousset Y. WINNER model for subway tunnel at 5.8 GHz. In: Proceedings of the 12th International Conference on ITS Telecommunications (ITST), Taibei, 2012. 743--747. Google Scholar

[75] Liu Y, Wang C X, Ghazal A, et al. A multi-mode waveguide tunnel channel model for high-speed train wireless communication systems. In: Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, 2015. 1--5. Google Scholar

[76] Gentile C, Valoit F, Moayeri N. A retracing model for wireless propagation in tunnels with varying cross section. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), Anaheim, 2012. 5027--5032. Google Scholar

[77] Chen X, Pan Y T, Wu Y M, et al. Research on doppler spread of multipath channel in subwaytunnel. In: Proceedings of IEEE International Conference on Communication Problem-Solving (ICCP), Beijing, 2014. 56--59. Google Scholar

[78] Emami Forooshani A, Noghanian S, Michelson D G. Characterization of Angular Spread in Underground Tunnels Based on the Multimode Waveguide Model. IEEE Trans Commun, 2014, 62: 4126-4133 CrossRef Google Scholar

[79] Liu C G, Chen Q, Zhang E. A calculation model and characteristics analysis of radio wave propagation in rectangular shed tunnel. In: Proceedings of the 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), Xian, 2012. 535--539. Google Scholar

[80] Zhang J C, Tao C, Liu L, et al. A study on channel modeling in tunnel scenario based on propagation-graph theory. In: Proceedings of IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, 2016. 1--5. Google Scholar

[81] Zhou C M. Physics-based ultra-wideband channel modeling fortunnel/mining environments. In: Proceedings of IEEE Radio and Wireless Symposium (RWS), San Diego, 2015. 92--94. Google Scholar

[82] Zhang X, Sood N, Siu J K. A Hybrid Ray-Tracing/Vector Parabolic Equation Method for Propagation Modeling in Train Communication Channels. IEEE Trans Antennas Propagat, 2016, 64: 1840-1849 CrossRef ADS Google Scholar

[83] Ge X, Tu S, Han T, et al. Energy efficiency of small cell backhaul networks based on Gauss-Markov mobile models. IET Netw, 2015, 4: 158--167. Google Scholar

[84] Mao G, Anderson B D O. Graph theoretic models and tools for the analysis of dynamic wireless multihop networks. In: Proceedings of IEEE Wireless Communications and Networking Conference, Budapest, 2009. 1--6. Google Scholar

[85] Cichon D J, Zwick T, Wiesbeck W. Ray optical modeling of wireless communications in high-speed railway tunnels. In: Proceedings of IEEE 46th Vehicular Technology Conference on Mobile Technology for the Human Race, Atlanta, 1996. 546--550. Google Scholar

[86] Shin-Hon Chen , Shyh-Kang Jeng . SBR image approach for radio wave propagation in tunnels with and without traffic. IEEE Trans Veh Technol, 1996, 45: 570-578 CrossRef Google Scholar

[87] Didascalou D, Schafer T M, Weinmann F. Ray-density normalization for ray-optical wave propagation modeling in arbitrarily shaped tunnels. IEEE Trans Antennas Propagat, 2000, 48: 1316-1325 CrossRef ADS Google Scholar

[88] Dudley D, Mahmoud S, Lienard M, et al. On wireless communication in tunnels. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, Honolulu, 2007. 3305--3308. Google Scholar

[89] Gibson W C. The Method of Moments in Electromagnetics. Boca Raton: Chapman & Hall/CRC, Taylor & Francis Group, 2008. Google Scholar

[90] Poitau G, Kouki A. Analysis of MIMO capacity in waveguide environments using practical antenna structures for selective mode excitation. In: Proceedings of Canadian Conference on Electrical and Computer Engineering, Niagara, 2004. 349--352. Google Scholar

[91] Popov A V, Ning Yan Zhu A V. Modeling radio wave propagation in tunnels with a vectorial parabolic equation. IEEE Trans Antennas Propagat, 2000, 48: 1403-1412 CrossRef ADS Google Scholar

[92] Ghazal A, Wang C X, Haas H, et al. A non-stationary geometry-based stochastic model for MIMO high-speed train channels. In: Proceedings of the 12th International Conference on ITS Telecommunications (ITST), Taiwan, 2012. 7--11. Google Scholar

[93] Ghazal A, Yuan Y, Wang C X. A Non-Stationary IMT-Advanced MIMO Channel Model for High-Mobility Wireless Communication Systems. IEEE Trans Wireless Commun, 2017, 16: 2057-2068 CrossRef Google Scholar

[94] Ghazal A, Wang C X, Liu Y, et al. A generic non-stationary MIMO channel model for different high-speed train scenarios. In: Proceedings of IEEE/CIC International Conference on Communications in China (ICCC), Shenzhen, 2015. 1--6. Google Scholar

[95] Mao R, Mao G. Road traffic density estimation in vehicular networks. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, 2013. 4653--4658. Google Scholar

[96] Yuan Y, Wang C X, He Y. 3D Wideband Non-Stationary Geometry-Based Stochastic Models for Non-Isotropic MIMO Vehicle-to-Vehicle Channels. IEEE Trans Wireless Commun, 2015, 14: 6883-6895 CrossRef Google Scholar

[97] Yuan Y, Wang C X, Cheng X. Novel 3D Geometry-Based Stochastic Models for Non-Isotropic MIMO Vehicle-to-Vehicle Channels. IEEE Trans Wireless Commun, 2014, 13: 298-309 CrossRef Google Scholar

[98] Chen B, Zhong Z, Ai B. Stationarity intervals of time-variant channel in high speed railway scenario. J China Commun, 2012, 9: 64--70. Google Scholar

[99] Wang C X, Cheng X, Laurenson D I. Vehicle-to-vehicle channel modeling and measurements: recent advances and future challenges. IEEE Commun Mag, 2009, 47: 96--103. Google Scholar

[100] Molisch A F, Tufvesson F, Karedal J, et al. A survey on vehicle-to-vehicle propagation channels. IEEE Wirel Commun Mag, 2009, 16: 12--22. Google Scholar

[101] Liu Y, Wang C X, Lopez C. 3D non-stationary wideband circular tunnel channel models for high-speed train wireless communication systems. Sci China Inf Sci, 2017, 60: 082304 CrossRef Google Scholar

[102] Lienard M, Molina-Garcia-Pardo J M, Laly P, et al. Communication in tunnel: channel characteristics and performance of diversity schemes. In: Proceedings of the XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, 2014. 1--4. Google Scholar

[103] Mouaki B A, Quenneville M. Performance evaluation of an L-band broadcast DAB/DMB system in simulated subway tunnel environment. In: Proceedings of the 72nd Vehicular Technology Conference Fall (VTC-Fall'10), Ottawa, 2010. 1--6. Google Scholar

[104] Shuo T L, Zhao K, Wu H. Wireless communication for heavy haul railway tunnels based on distributed antenna systems. In: Proceedings of IEEE 83rd Vehicular Technology Conference (VTC'16-Springer), Nanjing, 2016. 1--5. Google Scholar

  • Figure 1

    Typical shapes of cross sections for tunnels. (a) Rectangular tunnel; (b) arched tunnel; (c) horse-shoe shapedtunnel; (d) semicircular tunnel

  • Figure 2

    (Color online) High speed train cellular architecture for tunnel scenario

  • Figure 3

    Classification of HST tunnel channel models

  • Figure 4

    (Color online) The received power for multi-mode and single-mode cases in a multi-mode tunnel channel model

  • Figure 5

    (Color online) A 3D RS-GBSM for HST tunnel scenarios

  • Table 1   Important tunnel channel measurements$^{\rm~a)}$
    Ref. Frequency Scenario Tunnel parameters Antenna configuration Channel statistics
    [10] 2.4 GHz $\begin{matrix}~\textrm{Arched}\\\textrm{subway}~\\ \textrm{tunnel}~\end{matrix}~$ $~\begin{matrix} \textrm{wide~tunnel:}\\ \textrm{9.8~m$×$6.2~m,}\\ \textrm{narrow~tunnel:}\\ \textrm{4.8~m$×$5.3~m} \end{matrix}~$ SISO $~\begin{matrix} \textrm{SF,~PL,}\\ \textrm{fast~fading,}\\ \textrm{LCF,}\\ \textrm{AFD} \end{matrix}~$
    [11] 900 MHz $\begin{matrix}~\textrm{Arched}~\\ \textrm{railway}~\\ ~\textrm{tunnel}~\end{matrix}~$ $~\begin{matrix} \textrm{height:~5.4~m,}\\ \textrm{width:~10.7~m,}\\ \textrm{length:~4000~m} \end{matrix}~$ SISO PL
    [31] 2.8$\sim$5 GHz $\begin{matrix}~\textrm{Semicircular}~\\ \textrm{railway}~\\ \textrm{tunnel}~\end{matrix}~$ $~\begin{matrix} \textrm{diameter:~8.6~m,}\\ \textrm{height(max):~6.1~m,}\\ \textrm{length:~3336~m} \end{matrix}~$ MIMO $~\begin{matrix} \textrm{PL,}\\ \textrm{PDF,}\\ \textrm{CDF} \end{matrix}~$
    [32] 900 MHz $\begin{matrix}~\textrm{Arched}~\\ \textrm{subway}~\\ \textrm{tunnel}~\end{matrix}~$ $~\begin{matrix} \textrm{two-track~tunnel:}\\ \textrm{width:~8~m,}\\ \textrm{length:~200~m,}\\ \textrm{single-track~tunnel:}\\ \textrm{width:~5~m,}\\ \textrm{length:~100~m} \end{matrix}~$ MIMO $~\begin{matrix} \textrm{CIR,}\\ \textrm{correlation~coefficient} \end{matrix}$
    [33] 2.1376 GHz $~\begin{matrix} \textrm{Subway}\\ \textrm{tunnel} \end{matrix}$ length: 34 km MIMO $\begin{matrix}~\textrm{PDP,~PL,}~\\ \textrm{K~factor,}~\\ \textrm{delay~spread}~\end{matrix}$
    [36] $~\begin{matrix} \textrm{2.4~GHz,}\\ \textrm{5~GHz} \end{matrix}$ $~\begin{matrix} \textrm{Horse-shoe}\\ \textrm{shaped}\\ \textrm{subway}\\ \textrm{tunnel} \end{matrix}$ $~\begin{matrix} \textrm{straight:~240~m,}\\ \textrm{curve:~140~m} \end{matrix}~$ SISO $\begin{matrix}~\textrm{PL,}~\\ \textrm{rms~delay~spread,}~\\ \textrm{channel~stationarity,}~\\ \textrm{channel~capacity}~\end{matrix}$
    [37] $\begin{matrix}~\textrm{465~MHz,}~\\ \textrm{820~MHz}~\end{matrix}$ $\begin{matrix} \textrm{Arched}~\\ \textrm{underground}~\\ \textrm{railway}~\end{matrix}~$ $~\begin{matrix} \textrm{floor~width:~5.8~m,}\\ \textrm{height:~4~m,}\\ \textrm{length:~980~m} \end{matrix}~$ SISO PL
    [38] $\begin{matrix}~\textrm{450~MHz$∼$}~\\ \textrm{5~GHz}~\end{matrix}$ $\begin{matrix} \textrm{Arched}~\\ \textrm{railway}~\\ \textrm{tunnel}~\end{matrix}~$ length: 3000 m SISO PL
    [39] $\begin{matrix}~\textrm{884~MHz$∼$}~\\ \textrm{2.45~GHz}~\end{matrix}$ $\begin{matrix} \textrm{Rectangular}~\\ \textrm{railway}~\\ \textrm{tunnel}~\end{matrix}~$ $~\begin{matrix} \textrm{width:~14.7~m,}\\ \textrm{height:~6.15~m,}\\ \textrm{length:~360~m} \end{matrix}~$ SISO PL
    [40] 2.49$\sim$4 GHz $\begin{matrix} \textrm{Rectangular}~\\ \textrm{tunnel}~\end{matrix}~$ $~\begin{matrix} \textrm{wide~tunnel:}\\ \textrm{2.4~m$×$3.1~m,}\\ \textrm{narrow~tunnel:}\\ \textrm{2.4~m$×$5.2~m} \end{matrix}~$ MIMO $\begin{matrix}~\textrm{PL,}~\\ \textrm{delay~spread}~\end{matrix}$
    a) PDF: probability density function; CDF: cumulative density function; LCR: level crossing rate; AFD: average fade
    duration; CIR: channel impulse responses; PDP: power delay profile; rms: root mean square.
  • Table 2   Important tunnel channel models$^{\rm~a)}$
    Ref. Channel model Scenario Channel characteristics Antenna configuration
    [76] Ray-tracing model Rectangular tunnel The received power SISO
    [77] Ray-tracing model $\begin{matrix} ~\textrm{Rectangular}~\\ ~\textrm{subway~tunnel} ~\end{matrix}~$ $\begin{matrix} \textrm{PSD,}~\\ \textrm{Doppler~spread,}\\ \textrm{Doppler~shift} \end{matrix}~$ SISO
    [56] Multi-mode model $\begin{matrix} \textrm{Rectangular}\\ \textrm{road~tunnel,}\\ \textrm{subway~tunnel} \end{matrix}~$ $\begin{matrix}~\textrm{Field~distribution,}\\ \textrm{PDP} \end{matrix}~$ SISO
    [78] $\begin{matrix}~\textrm{Multi-mode}\\ \textrm{waveguide~model} \end{matrix}~$ $\begin{matrix} \textrm{Rectangular}\\ \textrm{underground~mine,}\\ \textrm{semicircular}\\ \textrm{subway~tunnel} \end{matrix}~$ $\begin{matrix}~\textrm{Angular~properties,}\\ \textrm{correlation~of~array~elements,}\\ \textrm{PAS} \end{matrix}~$ MIMO
    [79] GO model $\begin{matrix} \textrm{Rectangular}\\ \textrm{underground~mine} \end{matrix}~$ $\begin{matrix}~\textrm{Large-scale~fading,}\\ \textrm{small-scale~fading} \end{matrix}~$ SISO
    [25] FSMM $\begin{matrix}~\textrm{Rectangular}\\ \textrm{subway~tunnel} \end{matrix}~$ $\begin{matrix}~\textrm{Number~of~states,}\\ \textrm{distance~interval,}\\ \textrm{SNR} \end{matrix}~$ SISO
    [80] $\begin{matrix}~\textrm{Propagation-graph}\\ \textrm{theory~based~model} \end{matrix}~$ Arched tunnel $\begin{matrix}~\textrm{Channel~coefficients,}\\ \textrm{CIR~in~delay,}\\ \textrm{antennas'~correlation~coefficient,}\\ \textrm{channel~capacity} \end{matrix}~$ MIMO
    [81] $\begin{matrix}~\textrm{Physics-based}\\ \textrm{deterministic~UWB} \end{matrix}~$ Rectangular tunnel $\begin{matrix}~\textrm{Received~power,}\\ \textrm{rms~delay~spread,}\\ \textrm{CIR,}\\ \textrm{channel~transfer~function} \end{matrix}~$ SISO
    [63] GBSB model Rectangular tunnel $\begin{matrix}~\textrm{Space-time~correlation~function,~}~\\ \textrm{PDF~of~AoA,~Rice~factor }~\end{matrix}~$ MIMO
    [74] WINNER model $\begin{matrix}~\textrm{Rectangular}~\\ \textrm{subway~tunnel} \end{matrix}~$ $\begin{matrix}~\textrm{PL,~fast~fading,}~\\ \textrm{delays,~AoA,~AoD} \end{matrix}~$ MIMO
    [64] GBSM $\begin{matrix}~\textrm{Semicircular}~\\ \textrm{tunnel} \end{matrix}~$ $\begin{matrix}~\textrm{Time-variant~transfer~function,}~\\ \textrm{frequency~correlation~function,}\\ \textrm{CCF,~ACF} \end{matrix}~$ MIMO
    [82] Hybridmodel Rectangular tunnel The received power SISO
    a) AoA: angle of arrival; AoD: angle of departure; rms: root mean square; PSD: power spectrum density; PAS: power
    azimuth spectrum; SNR: signal to noise; CCF: cross correlation function; ACF: autocorrelation function.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号