SCIENTIA SINICA Informationis, Volume 49, Issue 3: 342-360(2019) https://doi.org/10.1360/N112017-00200

Threshold voltage and DIBL effect analysis and modeling for FD-SOI MOSFET with high k + SiO$_2$ gate

More info
  • ReceivedOct 13, 2017
  • AcceptedMar 28, 2018
  • PublishedMar 15, 2019


This study aims to propose a gate structure of high k + SiO$_2$ for a fully depleted silicon-on-Insulator (FD-SOI) MOSFET. We developed a two-dimensional model to calculate its subthreshold surface potential of the front gate, threshold voltage, and drain induced barrier lowering (DIBL) effect. Based on the structure and different dielectric permittivity of FD-SOI MOSFET, the MOSFET of the subthreshold state is divided into several distinct rectangular equivalent sources. Furthermore, two-dimensional (2D) boundary value problems of Poisson and Laplace equations are built on the polygon region. Then, we use the method of separation of variables and the eigenfunction expansion to solve the 2D boundary value problems, and obtained their 2D solutions. Computational results show that the high k + SiO$_2$ gate can effectively suppress the degradation of FD-SOI MOSFET threshold voltage, the aggravation of DIBL effect, and the FIBL effect, which are caused by the dielectric permittivity of high k. Since the equations of the model are linear equations, their computational cost is minimal so that the model can be used for not only modeling and simulation of FD-SOI MOSFETs but also as a device model of circuit simulators.

Funded by






林志瑗, 杨铨让, 沙玉钧. 电磁场工程基础. 北京: 高等教育出版社, 1984.

\begin{equation}C_{{\rm edge}}=\frac{2\varepsilon}{2\pi}{\rm ln}\frac{2\pi w}{t}=\frac{\varepsilon}{\pi}{\rm ln}\frac{2\pi w}{t}, \tag{33}\end{equation} 式(A1)中$\varepsilon$是介电常数, $w$和$t$分别是栅的宽度和介质材料厚度.因此完整的栅电容是 \begin{equation}C_{{\rm g}}^\prime=\frac{\varepsilon}{\pi}{\rm ln}\frac{2\pi w}{t}+\frac{\varepsilon}{\pi}wl, \tag{34}\end{equation} 式中$l$是栅长度. 单位面积的栅电容是 \begin{equation}C_{{\rm g}}=\frac{C_{{\rm g}}^\prime}{lw}=\varepsilon\bigg[\frac{1}{t}+\frac{1}{lw\pi}{\rm ln}\frac{2\pi w}{t}\bigg], \tag{35}\end{equation} 上式表明单位面积的电容与沟道长度、介电常数、栅宽都有影响. par 下面用式(A3)计算不同介质的单位面积栅长电容. SiO$_2$介电常数是$\varepsilon_{{\rm~ox}}$, 栅介质电容是 \begin{equation}C_{{\rm ox}}=\varepsilon_{{\rm ox}}\bigg[\frac{1}{t_{{\rm ox}}}+\frac{1}{lw\pi}{\rm ln}\frac{2\pi w}{t_{{\rm ox}}}\bigg]=C_0\bigg[1+\frac{t_{{\rm ox}}}{lw\pi}{\rm ln}\frac{2\pi w}{t_{{\rm ox}}}\bigg], \tag{36}\end{equation} 式(A4)中$C_0=\frac{\varepsilon_{{\rm~ox}}}{t_{{\rm~ox}}}$, 是单位面积的平行板栅电容, 称作栅的本征电容. 若用等电容设计, 设高k材料介电常数是$\varepsilon_{{\rm~k}}$, 则有$t_{{\rm~g}}=\frac{\varepsilon_{{\rm~k}}}{\varepsilon_{{\rm~ox}}}t_{{\rm~ox}}$, 高k栅电容是 \begin{equation}C_k=\varepsilon_{{\rm k}}\bigg[\frac{1}{t_{\rm k}}+\frac{1}{\pi lw}{\rm ln}\frac{2\pi w}{t_{\rm k}}\bigg]= C_0\bigg[1+\frac{t_{\rm ox}}{\pi lw}\frac{\varepsilon_{{\rm k}}}{\varepsilon_{{\rm ox}}}\bigg({\rm ln}\frac{2\pi w}{t_{\rm ox}}-{\rm ln}\frac{\varepsilon_{{\rm k}}}{\varepsilon_{{\rm ox}}}\bigg)\bigg]. \tag{37}\end{equation}

高k + SiO$_2$栅的栅电容如图A1所示. $C_{{\rm~k+SiO_2}}$是$C_{{\rm~ox}}^\prime$与$C_{{\rm~k}}^\prime$的串联,等效电容是 \begin{equation}C_{{\rm k+SiO_2}}=\frac{C_{{\rm ox}}^\prime C_{{\rm k}}^\prime}{C_{{\rm ox}}^\prime+C_{{\rm k}}^\prime}. \tag{38}\end{equation}

等效电容设计的MOSFET SiO$_2$层厚度是$t_{{\rm~ox}}$, 令$t_{{\rm~ox}}^\prime=\alpha~t_{{\rm~ox}}~(0\leq\alpha\leq1)$是高k + SiO$_2$栅器件的SiO$_2$层厚度,等效氧化层厚度${\rm~EOT}=(1-\alpha)t_{{\rm~ox}}$, 则有 \begin{align*}& C_{{\rm ox}}^\prime=\varepsilon_{{\rm ox}}\bigg[\frac{1}{\alpha t_{{\rm ox}}}+\frac{1}{\pi lw}\bigg({\rm ln}\frac{2\pi w}{t_{\rm k}}+{\rm ln}\frac{1}{\alpha}\bigg)\bigg], \\ & C_{{\rm k}}^\prime=C_0\bigg[\frac{1}{1-\alpha}+\frac{\varepsilon_{{\rm k}}t_{\rm ox}}{\varepsilon_{{\rm ox}}\pi lw}\bigg({\rm ln}\frac{2\pi w}{t_{\rm ox}}+{\rm ln}\frac{\varepsilon_{{\rm ox}}}{\varepsilon_{{\rm k}}}+\frac{1}{1-\alpha}\bigg)\bigg]. \end{align*} 等效电容计算仅考虑高k材料的影响,故有$C_{{\rm~ox}}^\prime\approx\frac{C_0}{\alpha}$, $C_{{\rm~k}}^\prime\approx~C_0[\frac{1}{1-\alpha}+\frac{\varepsilon_{{\rm~k}}t_{\rm~ox}}{\varepsilon_{{\rm~ox}}\pi~lw}{\rm~ln}\frac{2\pi~w}{t_{\rm~ox}}]$, 式(6)的高k + SiO$_2$栅等效电容为 \begin{equation}C_{{\rm k+SiO_2}}=\frac{C_0\big[\frac{1}{1-\alpha}+\frac{\varepsilon_{{\rm k}}}{\varepsilon_{{\rm ox}}}\frac{t_{\rm ox}}{\pi lw}{\rm ln}\frac{2\pi w}{t_{\rm ox}}\big]}{\big[\frac{1}{1-\alpha}+\alpha\frac{\varepsilon_{{\rm k}}}{\varepsilon_{{\rm ox}}}\frac{t_{\rm ox}}{\pi lw}{\rm ln}\frac{2\pi w}{t_{\rm ox}}\big]} =C_0\left[1+\frac{(1+\alpha)^2\frac{\varepsilon_{{\rm k}}}{\varepsilon_{{\rm ox}}}\frac{t_{\rm ox}}{\pi lw}{\rm ln}\frac{2\pi wlw}{t_{\rm ox}}}{1+\alpha(1+\alpha)\frac{\varepsilon_{{\rm k}}}{\varepsilon_{{\rm ox}}}\frac{t_{\rm ox}}{\pi lw}{\rm ln}\frac{2\pi w}{t_{\rm ox}}}\right]. \tag{39}\end{equation}


[1] El Dirani H, Fonteneau P, Solaro Y. Sharp-switching band-modulation back-gated devices in advanced FDSOI technology. Solid-State Electron, 2017, 128: 180-186 CrossRef ADS Google Scholar

[2] Shin M, Shi M, Mouis M. In depth characterization of electron transport in 14 nm FD-SOI CMOS devices. Solid-State Electron, 2015, 112: 13-18 CrossRef ADS Google Scholar

[3] Xie Q, Xu J, Taur Y. Review and Critique of Analytic Models of MOSFET Short-Channel Effects in Subthreshold. IEEE Trans Electron Devices, 2012, 59: 1569-1579 CrossRef ADS Google Scholar

[4] Coquand R, Barraud S, Cassé M. Scaling of high-κ/metal-gate TriGate SOI nanowire transistors down to 10nm width. Solid-State Electron, 2013, 88: 32-36 CrossRef ADS Google Scholar

[5] Makovejev S, Planes N, Haond M. Comparison of self-heating and its effect on analogue performance in 28 nm bulk and FDSOI. Solid-State Electron, 2016, 115: 219-224 CrossRef ADS Google Scholar

[6] El Dirani H, Solaro Y, Fonteneau P. A band-modulation device in advanced FDSOI technology: Sharp switching characteristics. Solid-State Electron, 2016, 125: 103-110 CrossRef ADS Google Scholar

[7] Morvan S, Andrieu F, Barbé J C. Study of an embedded buried SiGe structure as a mobility booster for fully-depleted SOI MOSFETs at the 10 nm node. Solid-State Electron, 2014, 98: 50-54 CrossRef ADS Google Scholar

[8] Meel K, Gopal R, Bhatnagar D. Three-dimensional analytic modelling of front and back gate threshold voltages for small geometry fully depleted SOI MOSFET's. Solid-State Electron, 2011, 62: 174-184 CrossRef ADS Google Scholar

[9] Kumar M J, Chaudhry A. Two-Dimensional Analytical Modeling of Fully Depleted DMG SOI MOSFET and Evidence for Diminished SCEs. IEEE Trans Electron Devices, 2004, 51: 569-574 CrossRef ADS Google Scholar

[10] Mohamad B, Leroux C, Rideau D. Reliable gate stack and substrate parameter extraction based on C-V measurements for 14 nm node FDSOI technology. Solid-State Electron, 2017, 128: 10-16 CrossRef ADS Google Scholar

[11] Suzuki K, Tanaka T, Tosaka Y. Scaling theory for double-gate SOI MOSFET's. IEEE Trans Electron Devices, 1993, 40: 2326-2329 CrossRef ADS Google Scholar

[12] Lo S H, Buchanan D A, Taur Y. Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's. IEEE Electron Device Lett, 1997, 18: 209-211 CrossRef ADS Google Scholar

[13] Mukhopadhyay B, Biswas A, Basu P K. Modelling of threshold voltage and subthreshold slope of strained-Si MOSFETs including quantum effects. Semicond Sci Technol, 2008, 23: 095017 CrossRef ADS Google Scholar

[14] Jayadeva G S, DasGupta A. Analytical Approximation for the Surface Potential in n-Channel MOSFETs Considering Quantum-Mechanical Effects. IEEE Trans Electron Devices, 2010, 57: 1820-1828 CrossRef ADS Google Scholar

[15] Kumar A, Tiwari P K. A threshold voltage model of short-channel fully-depleted recessed-source/drain (Re-S/D) UTB SOI MOSFETs including substrate induced surface potential effects. Solid-State Electron, 2014, 95: 52-60 CrossRef ADS Google Scholar

[16] Wang M, Ke D M, Xu C X. A 2-D semi-analytical model of parasitic capacitances for MOSFETs with high k gate dielectric in short channel. Solid-State Electron, 2014, 92: 35-39 CrossRef ADS Google Scholar

[17] Gan X W, Huang R, Liu X Y, et al. Nano CMOS Devices. Beijing: Science Press, 2004 [甘学温, 黄如, 刘晓彦, 等. 纳米CMOS器件. 北京: 科学出版社, 2004]. Google Scholar

[18] Yeap G C F, Krishnan S, Lin M R. Fringing-induced barrier lowering (FIBL) in sub-100 nm MOSFETs with high-K gate dielectrics. Electron Lett, 1998, 34: 1150-1152 CrossRef Google Scholar

[19] Cheng B, Cao M, Rao R. The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs. IEEE Trans Electron Devices, 1999, 46: 1537-1544 CrossRef ADS Google Scholar

[20] Hamadeh E A, Niemann D L, Gunther N G. Empirically Verified Thermodynamic Model of Gate Capacitance and Threshold Voltage of Nanoelectronic MOS Devices With Applications to $\hbox{HfO}_{2}$ and $\hbox{ZrO}_{2}$ Gate Insulators. IEEE Trans Electron Devices, 2007, 54: 2276-2282 CrossRef ADS Google Scholar

[21] SILVACO International. ATLAS User's Manual Device Simulation Software. Santa Clara, 2008. 40--45. Google Scholar

[22] Suzuki K, Pidin S. Short-channel single-gate soi mosfet model. IEEE Trans Electron Devices, 2003, 50: 1297-1305 CrossRef ADS Google Scholar

[23] Joachim H O, Yamaguchi Y, Ishikawa K. Simulation and two-dimensional analytical modeling of subthreshold slope in ultrathin-film SOI MOSFETs down to 0.1 mu m gate length. IEEE Trans Electron Devices, 1993, 40: 1812-1817 CrossRef ADS Google Scholar

[24] Rao R, Katti G, Havaldar D S. Unified analytical threshold voltage model for non-uniformly doped dual metal gate fully depleted silicon-on-insulator MOSFETs. Solid-State Electron, 2009, 53: 256-265 CrossRef ADS Google Scholar

[25] Chang K M, Wang H P. A simple 2D analytical threshold voltage model for fully depleted short-channel silicon-on-insulator MOSFETs. Semicond Sci Technol, 2004, 19: 1397-1405 CrossRef ADS Google Scholar

[26] Li S S. Semiconductor Physical Electronics. 2nd ed. Berlin: Springer, 2006. Google Scholar

[27] Liu Z H, Hu C, Huang J H. Threshold voltage model for deep-submicrometer MOSFETs. IEEE Trans Electron Devices, 1993, 40: 86-95 CrossRef ADS Google Scholar

[28] Mohapatra N R, Desai M P, Narendra S G. Modeling of parasitic capacitances in deep submicrometer conventional and high-K dielectric MOS transistors. IEEE Trans Electron Devices, 2003, 50: 959-966 CrossRef ADS Google Scholar

[29] Zeng S R. Fundamentals of Semiconductor Device Physics. Beijing: Peking University Press. 2009 [曾树容. 半导体器件物理基础(第二版). 北京: 北京大学出版社, 2009]. Google Scholar

  • Figure 1

    High k + SiO$_2$ gate FD-SOI MOSFET structure diagram

  • Figure 2

    Calculates the coordinate system of the high k + SiO$_2$ gate FD-SOI MOSFET

  • Figure 3

    $\varepsilon_{{\rm~k}}=22$ high k dielectric high k + SiO$_2$ gate FD-SOI MOSFET front gate surface potential with the gate voltage changes

  • Figure 4

    High k + SiO$_2$ gate FD-SOI MOSFET front gate surface potential along the channel length distribution.protect łinebreak (a) $\varepsilon_{{\rm~k}}=7.5$ medium; (b) $\varepsilon_{{\rm~k}}=22$ medium

  • Figure 5

    High k and high k + SiO$_2$ gate FD-SOI MOSFET threshold voltage algorithm flow chart

  • Figure 6

    (a) High k gate, high k + SiO$_2$ gate and SiO$_2$ gate FD-SOI MOSFET threshold voltage and channel length relationship; (b) the relationship between threshold voltage and channel length of high k + SiO$_2$ gate FD-SOI MOSFET with different media

  • Figure 7

    FD-SOI MOSFET threshold voltage and the device's physical structure and material parameters of the relationship. (a) High k gate material unchanged, change the Si film doping concentration; (b) all parameters remain unchanged, only change the thickness of the Si film; (c) high k material unchanged, only change the ratio of high k layer and SiO$_2$ layer; (d) the high k material and device structure remain unchanged, changing only the back gate oxide thickness; (e) high k material and structure unchanged, plus different back gate voltage

  • Figure 8

    High k + SiO$_2$ gate FD-SOI MOSFET threshold voltage and dielectric constant relationship, the abscissa is the high k material dielectric constant. (a) Long channel (60 nm) situation; (b) the channel length is 20 nm short channel condition; (c) different thickness of the high k + SiO$_2$ gate, the channel length is 20 nm situation

  • Figure 9

    (a) The diagrammatic sketch for the leakage electric field intensity of two sides between the gate; (b) the edge effect discussed in the paper

  • Figure 10

    Surface potential distribution of SiO$_2$ gate, high k gate and high k + SiO$_2$ gate FD-SOI MOSFETs. protect łinebreak (a) The channel length is the surface potential $\phi_{\rm~f}(x)$ of 110 nm; (b) the channel length is 20 nm, the surface potential $\phi_{\rm~f}(x)$;protect łinebreak (c) the barrier map of (b), the unit is V

  • Figure 11

    20 nm channel length FD-SOI MOSFET $V_{{\rm~GS}}=0.3$ V, $V_{{\rm~GS}}$ and barrier height difference $\nabla\Phi$ diagram

  • Table 1   Capacitor capacitance per unit area of SiO$_2$ gate, high k + SiO$_2$ gate and high k gate
    Channel length ($l$) 110 nm 20 nm
    Gate capacitance of SiO$_2$ ($C_{\rm~ox}$) (1+0.0664)$C_0$ (1+0.365)$C_0$
    Gate capacitance of high k + SiO$_2$ ($C_{\rm~k+SiO_2}$) (1+0.157)$C_0$ (1+0.637)$C_0$
    Gate capacitance of high k ($C_{\rm~k}$) (1+0.295)$C_0$ (1+1.623)$C_0$
  • Table 2   Figure $V_{\rm~GS}=0.3$ V, 20 nm channel FD-SOI MOSFET surface potential $\phi_{\rm~f}(x)$ data
    $X$ (nm) 50.00 50.8 52.4 55.1 60.00 64.9 67.6 69.2 70.0
    *SiO$_2~\phi_{\rm~f}(x)$ SILVACO 0.5852 0.5174 0.4577 0.4089 0.4042 0.4827 0.5854 0.6859 0.7852
    Model 0.5828 0.5250 0.4771 0.4332 0.4234 0.5041 0.5947 0.7221 0.7807
    *High k + SiO$_2~\phi_{\rm~f}(x)$ SILVACO 0.5852 0.5213 0.4705 0.4330 0.4345 0.5077 0.5979 0.6886 0.7852
    Model 0.5829 0.5288 0.4885 0.4534 0.4516 0.5247 0.6037 0.6818 0.7804
    *High k$~\phi_{\rm~f}(x)$ SILVACO 0.5852 0.5608 0.5305 0.5033 0.5140 0.5949 0.6787 0.7420 0.7852
    Model 0.5824 0.5469 0.5218 0.5007 0.5076 0.5756 0.6415 0.7306 0.7785

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有