SCIENTIA SINICA Informationis, Volume 48, Issue 9: 1137-1151(2018) https://doi.org/10.1360/N112017-00283

An overview of the underwater search and salvage process based on ROV

Linyi GU1,3, Qi SONG1,3,*, Hongwei YIN2,3, Jie JIA1,3
More info
  • ReceivedDec 25, 2017
  • AcceptedMar 30, 2018
  • PublishedAug 30, 2018


With the rapid development of underwater robotics technology, underwater search and salvage develops in a fine operation way. This article divides the search and salvage process into four stages: large area acoustic scanning and suspected point marking, bottom acoustic imaging and suspected point identifying, sit-on-bottom acoustic precise positioning and marker releasing, and goal close observation and hook salvage/submarine trenchless pulling wire rope engineering and salvage. This article reviews the methods of search and salvage, the need for search and salvage tools and vehicles, and typical successful cases at home and abroad in each stage.

Funded by



[1] Wu Z Y, Zheng Y L, Chu F Y, et al. Research status and prospect of sonar-detecting techniques near submarine. Adv Earth Sci, 2005, 20: 1210--1217. Google Scholar

[2] Liu J N, Zhao J H. The present status and developing trend of the multibeam system. Hydrographic Surv Charting, 2002, 22: 3--6. Google Scholar

[3] Zhai G J, Wang K P, Liu Y H. Technology of airborne laser bathymetry. Hydrographic Surv Charting, 2014, 34: 72--75. Google Scholar

[4] 刘晨晨. 高分辨率成像声纳图像识别技术研究. 博士学位论文. 哈尔滨: 哈尔滨工程大学, 2006. Google Scholar

[5] 李富会, 史青法. 多波束和声纳在大面积水域中探测水下目标物的组合方法. 城市建设理论研究: 电子版, 2014. doi: 10.3969/j.issn.2095-2104.2014.07.0463. Google Scholar

[6] Sun W C, Xiao F M, Jin S H, et al. Comparison of the methods of multibeam echo intensity data recording. Hydrographic Surv Charting, 2011, 31: 35--38. Google Scholar

[7] Anderson J T, Holliday D V, Kloser R, et al. Acoustic Seabed Classification of Marine Physical and Biological Landscapes. ICES Cooperative Research Report. No. 286. 2007. Google Scholar

[8] Liu X, Li H S, Zhou T, et al. Multibeam seafloor imaging technology based on the multiple sub-array detection method. J Harbin Eng Univ, 2012, 33: 197--202. Google Scholar

[9] Li H S, Xu C, Zhou T. High-resolution integrated detection of underwater topography and geomorphology based on multibeam interferometric echo sounder. Appl Mech Mater, 2012, 212: 345-350 CrossRef ADS Google Scholar

[10] Tao C H, Jin X L, X F, et al. The prospect of seabed classification technology. Donghai Mar Sci, 2004, 22: 28--33. Google Scholar

[11] Roberts H H, Shedd W, Jr J H. Dive site geology: DSV ALVIN (2006) and ROV JASON II (2007) dives to the middle-lower continental slope, northern Gulf of Mexico. Deep Sea Res Part II, 2010, 57: 1837-1858 CrossRef ADS Google Scholar

[12] Sun Y S, Li Y R, Sheng M W, et al. Application prospect of multi-bean echosounder on AUV. China Offshore Platform, 2017, 32: 14--20. Google Scholar

[13] 李冬, 刘雷, 张永合. 海洋侧扫声呐探测技术的发展及应用. 港口经济, 2017, 6: 56--58. Google Scholar

[14] 梁业松. SIS-1000型海底图像系统在大面积扫海中的应用. 海洋测绘, 2001, 2: 52--54. Google Scholar

[15] Landman K, Akombelwa M, Forbes A. The establishment of the early scholarship of professional and technical surveying education in South Africa for the period 1657 to 1929. SA J Geomatics, 2017, 6: 1-10 CrossRef Google Scholar

[16] Wang X L. High resolution sonar based on sparse feature. Dissertation for Master Degree. Xi'an: Xidian University, 2014. Google Scholar

[17] 孙文玉. 图像声纳的相控发射机设计. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2009. Google Scholar

[18] 李冬, 刘雷, 张永合. 海洋侧扫声呐探测技术的发展及应用. 港口经济, 2017, 6: 56--58(重复). Google Scholar

[19] Ren F J, Zhang L, Wang D J, et al. Development state of underwater vehicles. J Jiamusi Univ Natl Sci Edition, 2000, 18: 317--320. Google Scholar

[20] Smallwood D, Bachmayer R, Whitcomb L L. A new remotely operated underwater vehicle for dynamics and control research. In: Proceedings of the 11th International Symposium on Unmanned Untethered Submersible Technology, Durham, 1999. 370--377. Google Scholar

[21] Yuh J. Design and control of autonomous underwater robots: a survey. Autonomous Robots, 2000, 8: 7-24 CrossRef Google Scholar

[22] Xiao F M, Xia W, Wang Z G, et al. Analysis on relation between the cone of multibeam silence and the height of distinguishable target. Hydrographic Surv Charting, 2013, 33: 13--15. Google Scholar

[23] Yang W D, Li B, Zhang Y B. Study on well site investigation contents and techniques in deepwater oil and gas field. Offshore Oil, 2011, 31: 1--7. Google Scholar

[24] 温明明, 肖波, 徐行, 等. 深水油气田井场调查技术方法浅析. 南海地质研究, 2007, 118--126. Google Scholar

[25] Feng Z P. A review of the development of autonomous underwater vehicles (AUVs) in western countries. Torpedo Technol, 2005, 13: 5--9. Google Scholar

[26] Wu Y T, Zhou X H, Yang L. Underwater acoustic positioning system and its application. Hydrographic Surv Charting, 2003, 23: 18--21. Google Scholar

[27] Li S J, Bao G S, Wu S G. A practical overview and prospect of acoustic positioning technology. Ocean Technol, 2005, 24: 130--135. Google Scholar

[28] Yan Y, Ma P S, Wang D Y, et al. Development of deep sea ROV and its working system. Robot, 2005, 27: 82--89. Google Scholar

[29] Li C S. Research of visibility improving method for underwater observation video images. Dissertation for Master Degree. Qingdao: Ocean University of China, 2011. Google Scholar

[30] Ge Z F. Study on the restoration and mosaicing methods of underwater video. Dissertation for Master Degree. Qingdao: Ocean University of China, 2012. Google Scholar

[31] 徐静. 三维成像声纳. 2017. http://www.docin.com/p-769178147.html. Google Scholar

[32] 张小平. 高分辨率多波束成像声呐关键技术研究. 博士学位论文. 哈尔滨: 哈尔滨工程大学, 2005. Google Scholar

[33] 吴军民. 沉船打捞穿绳技术的探讨与研究. 硕士学位论文. 上海: 同济大学, 2005. Google Scholar

[34] Wang Z W. Current development of rescue and salvage equipments. J Mech Eng, 2013, 49: 91--100. Google Scholar

[35] Zhang W, Zhou X Q, Lou R. Technology of using trenchless horizoutal directional drilling passing lifting wires through the wreck. Sci Technol Ind, 2013, 13: 136--139. Google Scholar

[36] Zhang W, Zhou P F, Zhou X Q, et al. Discussion on application of non-digging technology in excavating steel wire holes in wreck removal operation. In: Proceedings of the 6th China International Rescue and Salvage Conference, Xi'an, 2010. Google Scholar

[37] 贾现军. 小型水下救援机器人位姿控制及其在水下搜救中的应用. 硕士学位论文. 杭州: 浙江大学, 2014. Google Scholar

  • Figure 1

    (Color online) Conch ROV

  • Figure 2

    (Color online) (a) “6000 m" deep sea ROV; (b) “Hippocampus" ROV

  • Figure 3

    (Color online) (a) The rescue ROV discovers the losing ROV; (b) the rescue ROV grabs the losing ROV

  • Figure 4

    (Color online) (a) Put the losing ROV in the basket; (b) the basket takes back the losing ROV

  • Figure 5

    (Color online) (a) Actual satellite imagery; (b) multibeam Sonar imagery

  • Figure 6

    (Color online) (a) Drop ROV from shipside; (b) drop markers based on the location of ROV

  • Figure 7

    (Color online) ROV observes the cage underwater

  • Table 1   Several representative multibeam bathymetric system
    Manufacturer Product model Vehicle Performance index
    ELAC Nautik ELAC SeaBeam 3020 Vessel Depth rating 50$\sim$9000 m, beam width 1$^{\circ}$/2$^{\circ}$, depth accuracy in accordance with IHO SP44 for depths greater than 100 m
    R2SONIC SONIC 2026 ROV/AUV, vessel Sounding depth 800 m, beam width 0.45$^{\circ}$$\times$0.45$^{\circ}$ (450 kHz), resolution 1.25 cm
    Atlas Hydrosweep MD/30 Vessel Sounding depth 5$\sim$7000 m, beam width 1$^{\circ}$$\times$1$^{\circ}$, resolution 6 cm
    Reson Reson SeatBat IDH T50-R Vessel Sounding depth 0.5$\sim$550 m, beam width 0.5$^{\circ}$/1$^{\circ}$/2$^{\circ}$, resolution 6 mm
  • Table 2   Several representative imaging sonar
    Manufacturer Product model Vehicle Performance index
    Teledyne BlueView BlueView P900 ROV/AUV, vessel, etc. 2D imaging sonar, depth rating 1000 m, beam width 1$^{\circ}$$\times$20$^{\circ}$, resolution 2.5 cm
    Tritech Gemini 720im ROV/AUV, vessel 3D imaging sonar, depth rating 200 m, beam width 90$^{\circ}$$\times$20$^{\circ}$, resolution 8 mm
    Teledyne BlueView BlueView BV5000 ROV/AUV 3D imaging sonar, depth rating 300 m, beam width 1$^{\circ}$$\times$1$^{\circ}$, resolution 1.3 cm
    Sound Metrics公司 ARIS VOYAGER 3000 ROV/AUV 3D imaging sonar, depth rating 4000 m, beam width 0.3$^{\circ}$$\times$15$^{\circ}$/0.2$^{\circ}$$\times$15$^{\circ}$, resolution 3 mm$\sim$10 cm
  • Table 3   Several representative ROVs in world and their configuration
    Manufacturer Product model Depth rating (m) Manipulator Main tools
    WHOI Jason 2/ Medea 6000 Two 7-function manipulators, Schilling Orion, Kraft Predator II 12 cameras, optional tools, samplers, etc.
    ISE HYSUB-150 6000 Two 7-function manipulators 6 cameras; optional tools,such as cutter, sampler, etc.
    MBARI Tiburon 4000 Two 7-function manipulators, Schilling Conan, Kraft Raptor 2 cameras, optional tools,such as drill, sampler, etc.
    MBARI (ISE) Ventana 1850 Two 7-function manipulators, Schilling Titan3, ISE Magnum 11 cameras, drill, etc.
    SAAB Seaeye Jaguar 6000 one 7-function manipulators, one 4-function manipulators, Schilling Orion 7P, Schilling Orion 4R 2 cameras, optional tools, samplers, etc.
  • Table 4   Several representative underwater operation manipulator
    Manufacturer Product model Vehicle Performance index
    FMC Schiling ORION 7P/7R light-/medium-class ROV 7-function position/rate controlled hydraulic manipulator, weight 54 kg (air)/38 kg (water), standard depth 6500 msw
    FMC Schiling TITAN 4 ultra-heavy work class ROV 7-function position controlled hydraulic manipulator, weight 100 kg (air)/78 kg (weight), standard depth 4000 msw/7000 msw
    FMC Schiling CONAN 7P light-/medium-class ROV 7-function position controlled hydraulic manipulator, weight 107 kg (air)/ 73 kg (water), standard depth 3000 msw
    SAAB Seaeye Hydro-Lek HLK-43000 light-class ROV 5-function manipulator, weight 6 kg (air)/4 kg (water), standard depth 80/160 bar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号