logo

SCIENTIA SINICA Informationis, Volume 48, Issue 6: 670-687(2018) https://doi.org/10.1360/N112018-00084

Transfer techniques for single-crystal silicon/germanium nanomembranes and their application in flexible electronics

More info
  • ReceivedApr 10, 2018
  • AcceptedApr 20, 2018
  • PublishedJun 12, 2018

Abstract

Single-crystal silicon and germanium are the basis of the modern semiconductor industry. They exhibit unique mechanical, optical, electrical, and thermal properties when their thicknesses decrease to the nanoscale. Ultra-small thickness provides silicon and germanium flexibility. Compared with organic semiconductors, silicon and germanium have much higher carrier mobility. This makes them ideal components for high-performance devices and gives them great potential in the application of the internet of things, wearable/implantable electronics, and bio-electronics. In this review, we discuss the strategies of “Device-Last Approach" and “Device-First Approach" for silicon and germanium nanomembrane devices and their applications in flexible electronics. The latest development of transferred nanomembranes and their applications in flexible electronics, as well as the scientific and technique issues to be solved, are specifically discussed.


Funded by

国家自然科学基金(51322201)

国家自然科学基金(U1632115)

国家自然科学基金(51602056)


References

[1] Rogers J A, Lagally M G, Nuzzo R G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature, 2011, 477: 45-53 CrossRef PubMed ADS Google Scholar

[2] Langdo T A, Currie M T, Lochtefeld A. SiGe-free strained Si on insulator by wafer bonding and layer transfer. Appl Phys Lett, 2003, 82: 4256-4258 CrossRef ADS Google Scholar

[3] Hebard A F. Buckminsterfullerene. Annu Rev Mater Sci, 1993, 23: 159-191 CrossRef ADS Google Scholar

[4] Zhu J, Yu Z, Burkhard G F. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett, 2009, 9: 279-282 CrossRef PubMed ADS Google Scholar

[5] McEuen P L, Fuhrer M S, Hongkun Park M S. Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol, 2002, 1: 78-85 CrossRef ADS Google Scholar

[6] Sanders G D, Stanton C J, Chang Y C. Theory of transport in silicon quantum wires. Phys Rev B, 1993, 48: 11067-11076 CrossRef ADS Google Scholar

[7] Wang J. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293: 1455-1457 CrossRef PubMed ADS Google Scholar

[8] Takagi S, Koga J, Toriumi A. Mobility Enhancement of SOI MOSFETs due to Subband Modulation in Ultrathin SOI Films. Jpn J Appl Phys, 1998, 37: 1289-1294 CrossRef ADS Google Scholar

[9] Chen F, Ramayya E B, Euaruksakul C. Quantum confinement, surface roughness, and the conduction band structure of ultrathin silicon membranes.. ACS Nano, 2010, 4: 2466-2474 CrossRef PubMed Google Scholar

[10] Feng P, Mo?nch I, Harazim S. Giant Persistent Photoconductivity in Rough Silicon Nanomembranes. Nano Lett, 2009, 9: 3453-3459 CrossRef PubMed ADS Google Scholar

[11] Yang H, Zhao D, Chuwongin S. Transfer-printed stacked nanomembrane lasers on silicon. Nat Photon, 2012, 6: 615-620 CrossRef ADS Google Scholar

[12] Varpula A, Timofeev A V, Shchepetov A. Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes. Appl Phys Lett, 2017, 110: 262101 CrossRef ADS Google Scholar

[13] Connelly D, Clifton P. Analysis of Schottky barriers to ultrathin strained Si. J Appl Phys, 2008, 103: 074506 CrossRef ADS Google Scholar

[14] Tsutsui G, Hiramoto T. Experimental Study on Mobility in (110)-Oriented Ultrathin-Body Silicon-on-Insulator n-Type Metal Oxide Semiconductor Field-Effect Transistor with Single- and Double-Gate Operations. Jpn J Appl Phys, 2007, 46: 5686-5690 CrossRef ADS Google Scholar

[15] Fischetti M V, Laux S E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J Appl Phys, 1996, 80: 2234-2252 CrossRef ADS Google Scholar

[16] Euaruksakul C, Li Z W, Zheng F. Influence of Strain on the Conduction Band Structure of Strained Silicon Nanomembranes. Phys Rev Lett, 2008, 101: 147403 CrossRef PubMed ADS Google Scholar

[17] Boztug C, Sánchez-Pérez J R, Cavallo F. Strained-germanium nanostructures for infrared photonics.. ACS Nano, 2014, 8: 3136-3151 CrossRef PubMed Google Scholar

[18] Greil J, Lugstein A, Zeiner C. Tuning the Electro-optical Properties of Germanium Nanowires by Tensile Strain. Nano Lett, 2012, 12: 6230-6234 CrossRef PubMed ADS Google Scholar

[19] Liu W, Asheghi M. Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl Phys Lett, 2004, 84: 3819-3821 CrossRef ADS Google Scholar

[20] Liu F, Huang M, Rugheimer P P. Nanostressors and the Nanomechanical Response of a Thin Silicon Film on an Insulator. Phys Rev Lett, 2002, 89: 136101 CrossRef PubMed ADS Google Scholar

[21] Zhang P, Tevaarwerk E, Park B N. Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature, 2006, 439: 703-706 CrossRef PubMed ADS Google Scholar

[22] Northrup J E. Electronic structure of Si(100) c(4 x 2) calculated within the GW approximation. Phys Rev B, 1993, 47: 10032-10035 CrossRef ADS Google Scholar

[23] Seonghoon Jin , Fischetti M V, Ting-Wei Tang M V. Modeling of Surface-Roughness Scattering in Ultrathin-Body SOI MOSFETs. IEEE Trans Electron Devices, 2007, 54: 2191-2203 CrossRef ADS Google Scholar

[24] Kurokawa Y, Miyazaki H, Jimba Y. Light scattering from a monolayer of periodically arrayed dielectric spheres on dielectric substrates. Phys Rev B, 2002, 65: 201102 CrossRef ADS Google Scholar

[25] Dutta S, Patra A K, De S. Self-assembled TiO2 nanospheres by using a biopolymer as a template and its optoelectronic application.. ACS Appl Mater Interfaces, 2012, 4: 1560-1564 CrossRef PubMed Google Scholar

[26] Feng P, M?nch I, Huang G. Local-illuminated ultrathin silicon nanomembranes with photovoltaic effect and negative transconductance.. Adv Mater, 2010, 22: 3667-3671 CrossRef PubMed Google Scholar

[27] Feng P, Wu G, Schmidt O G. Photosensitive hole transport in Schottky-contacted Si nanomembranes. Appl Phys Lett, 2014, 105: 121101 CrossRef ADS Google Scholar

[28] Subbaraman H, Xu X, Lin C Y, et al. Silicon nanomembrane based photonic crystal waveguide true-time-delay lines on a glass substrate. In: Proceedings of Society of Photo-Optical Instrumentation Engineers, San Diego, 2013. 8629: 86291E. Google Scholar

[29] Xu X, Subbaraman H, Kwong D. Large area silicon nanomembrane photonic devices on unconventional substrates. IEEE Photon Technol Lett, 2013, 25: 1601-1604 CrossRef ADS Google Scholar

[30] Cho M, Seo J H, Kim M. Resonant cavity germanium photodetector via stacked single-crystalline nanomembranes. J Vacuum Sci Tech B Nanotechnol MicroElectron-Mater Processing Measurement Phenomena, 2016, 34: 040604 CrossRef Google Scholar

[31] Cho M, Seo J H, Lee J. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes. Appl Phys Lett, 2015, 106: 181107 CrossRef ADS Google Scholar

[32] Fujita M. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science, 2005, 308: 1296-1298 CrossRef PubMed ADS Google Scholar

[33] Shakoor A, Lo Savio R, Cardile P. Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths. Laser Photonics Rev, 2013, 7: 114-121 CrossRef Google Scholar

[34] Qiang Z, Yang H, Chen L. Fano filters based on transferred silicon nanomembranes on plastic substrates. Appl Phys Lett, 2008, 93: 061106 CrossRef ADS Google Scholar

[35] Chen L, Qiang Z, Yang H. Polarization and angular dependent transmissions on transferred nanomembrane Fano filters. Opt Express, 2009, 17: 8396-8406 CrossRef ADS Google Scholar

[36] Zhao D, Yang H, Chuwongin S. Design of photonic crystal membrane-reflector-based VCSELs. IEEE Photonics J, 2012, 4: 2169-2175 CrossRef Google Scholar

[37] Zhao D, Ma Z, Zhou W. Field penetrations in photonic crystal Fano reflectors. Opt Express, 2010, 18: 14152-14158 CrossRef ADS Google Scholar

[38] Jang H, Lee W, Won S M. Quantum Confinement Effects in Transferrable Silicon Nanomembranes and Their Applications on Unusual Substrates. Nano Lett, 2013, 13: 5600-5607 CrossRef PubMed ADS Google Scholar

[39] Song E, Si W, Cao R. Schottky contact on ultra-thin silicon nanomembranes under light illumination. Nanotechnology, 2014, 25: 485201 CrossRef PubMed ADS Google Scholar

[40] Li G, Guo Q, Fang Y. Self-assembled dielectric microsphere as light concentrators for ultrathin-silicon-based photodetectors with broadband enhancement. Phys Status Solid A, 2017, 214: 1700295 CrossRef ADS Google Scholar

[41] Ishikawa T, Nikaido H, Usami K. Fabrication of Nanosilicon Ink and Two-Dimensional Array of Nanocrystalline Silicon Quantum Dots. Jpn J Appl Phys, 2010, 49: 125002-125004 CrossRef ADS Google Scholar

[42] Menon L, Yang H, Cho S J. Transferred Flexible Three-Color Silicon Membrane Photodetector Arrays. IEEE Photonics J, 2015, 7: 1-6 CrossRef Google Scholar

[43] Yoon J, Baca A J, Park S I. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater, 2008, 7: 907-915 CrossRef PubMed ADS Google Scholar

[44] Lee S M, Biswas R, Li W. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.. ACS Nano, 2014, 8: 10507-10516 CrossRef PubMed Google Scholar

[45] Chávez-ángel E, Reparaz J S, Gomis-Bresco J. Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry. APL Mater, 2014, 2: 012113 CrossRef ADS Google Scholar

[46] Neogi S, Reparaz J S, Pereira L F C. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.. ACS Nano, 2015, 9: 3820-3828 CrossRef PubMed Google Scholar

[47] Wang Z, Shi X, Tolbert L M. A High Temperature Silicon Carbide mosfet Power Module With Integrated Silicon-On-Insulator-Based Gate Drive. IEEE Trans Power Electron, 2015, 30: 1432-1445 CrossRef Google Scholar

[48] Roberts M M, Klein L J, Savage D E. Elastically relaxed free-standing strained-silicon nanomembranes. Nat Mater, 2006, 5: 388-393 CrossRef PubMed ADS Google Scholar

[49] Song E, Guo Q, Huang G. Bendable photodetector on Fibers Wrapped with Flexible Ultrathin Single Crystalline Silicon Nanomembranes. ACS Appl Mater Interfaces, 2017, 9: 12171-12175 CrossRef Google Scholar

[50] Song E, Fang H, Jin X. Thin, Transferred Layers of Silicon Dioxide and Silicon Nitride as Water and Ion Barriers for Implantable Flexible Electronic Systems. Adv Electron Mater, 2017, 3: 1700077 CrossRef Google Scholar

[51] Guo Q, Fang Y, Zhang M. Wrinkled Single-Crystalline Germanium Nanomembranes for Stretchable Photodetectors. IEEE Trans Electron Devices, 2017, 64: 1985-1990 CrossRef ADS Google Scholar

[52] Demeester P, Pollentier I, Dobbelaere P D. Epitaxial lift-off and its applications. Semicond Sci Technol, 1993, 8: 1124-1135 CrossRef ADS Google Scholar

[53] Li M J, Tandon P, Bookbinder D C. Ultra-Low Bending Loss Single-Mode Fiber for FTTH. J Lightwave Technol, 2009, 27: 376-382 CrossRef ADS Google Scholar

[54] Menard E, Lee K J, Khang D Y. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl Phys Lett, 2004, 84: 5398-5400 CrossRef ADS Google Scholar

[55] Hsia K J, Huang Y, Menard E. Collapse of stamps for soft lithography due to interfacial adhesion. Appl Phys Lett, 2005, 86: 154106 CrossRef ADS Google Scholar

[56] Meitl M A, Zhu Z T, Kumar V. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater, 2006, 5: 33-38 CrossRef ADS Google Scholar

[57] Feng X, Meitl M A, Bowen A M. Competing fracture in kinetically controlled transfer printing.. Langmuir, 2007, 23: 12555-12560 CrossRef PubMed Google Scholar

[58] Carlson A, Kim-Lee H J, Wu J. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl Phys Lett, 2011, 98: 264104 CrossRef ADS Google Scholar

[59] Kim S, Wu J, Carlson A. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc Natl Acad Sci USA, 2010, 107: 17095-17100 CrossRef PubMed ADS Google Scholar

[60] Saeidpourazar R, Li R, Li Y. Laser-Driven Micro Transfer Placement of Prefabricated Microstructures. J Microelectromech Syst, 2012, 21: 1049-1058 CrossRef Google Scholar

[61] Carlson A, Wang S, Elvikis P. Active, Programmable Elastomeric Surfaces with Tunable Adhesion for Deterministic Assembly by Transfer Printing. Adv Funct Mater, 2012, 22: 4476-4484 CrossRef Google Scholar

[62] Menard E, Nuzzo R G, Rogers J A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl Phys Lett, 2005, 86: 093507 CrossRef ADS Google Scholar

[63] Jong-Hyun Ahn , Hoon-Sik Kim , Keon Jae Lee . High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates. IEEE Electron Device Lett, 2006, 27: 460-462 CrossRef ADS Google Scholar

[64] Kim D H, Ahn J H, Kim H S. Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon. IEEE Electron Device Lett, 2008, 29: 73-76 CrossRef ADS Google Scholar

[65] Yu K J, Kuzum D, Hwang S W. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat Mater, 2016, 15: 782-791 CrossRef PubMed ADS Google Scholar

[66] Zhang K, Jung Y H, Mikael S. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat Commun, 2017, 8: 1782 CrossRef PubMed ADS Google Scholar

[67] Lee K J, Lee J, Hwang H. A printable form of single-crystalline gallium nitride for flexible optoelectronic systems.. Small, 2005, 1: 1164-1168 CrossRef PubMed Google Scholar

[68] Sun Y, Menard E, Rogers J A. Gigahertz operation in flexible transistors on plastic substrates. Appl Phys Lett, 2006, 88: 183509 CrossRef ADS Google Scholar

[69] Sun Y, Khang D Y, Hua F. Photolithographic Route to the Fabrication of Micro/Nanowires of III-V Semiconductors. Adv Funct Mater, 2005, 15: 30-40 CrossRef Google Scholar

[70] Xue M Q, Yang Y L, Cao T B. Well-Positioned Metallic Nanostructures Fabricated by Nanotransfer Edge Printing. Adv Mater, 2008, 20: 596-600 CrossRef Google Scholar

[71] Kraus T, Malaquin L, Schmid H. Nanoparticle printing with single-particle resolution. Nat Nanotech, 2007, 2: 570-576 CrossRef PubMed ADS Google Scholar

[72] Kim T H, Cho K S, Lee E K. Full-colour quantum dot displays fabricated by transfer printing. Nat Photon, 2011, 5: 176-182 CrossRef ADS Google Scholar

[73] Chen J H, Ishigami M, Jang C. Printed Graphene Circuits. Adv Mater, 2007, 19: 3623-3627 CrossRef Google Scholar

[74] Kang S J, Kocabas C, Kim H S. Printed Multilayer Superstructures of Aligned Single-Walled Carbon Nanotubes for Electronic Applications. Nano Lett, 2007, 7: 3343-3348 CrossRef PubMed ADS Google Scholar

[75] Liu S, Becerril H A, LeMieux M C. Direct Patterning of Organic-Thin-Film-Transistor Arrays via a "Dry-Taping" Approach. Adv Mater, 2009, 21: 1266-1270 CrossRef Google Scholar

[76] Khang D Y, Rogers J A, Lee H H. Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics. Adv Funct Mater, 2009, 19: 1526-1536 CrossRef Google Scholar

[77] Kim D H, Rogers J A. Stretchable Electronics: Materials Strategies and Devices. Adv Mater, 2008, 20: 4887-4892 CrossRef Google Scholar

[78] Xu S, Yan Z, Jang K I. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347: 154-159 CrossRef PubMed ADS Google Scholar

[79] Rogers J A, Someya T, Huang Y. Materials and Mechanics for Stretchable Electronics. Science, 2010, 327: 1603-1607 CrossRef PubMed ADS Google Scholar

[80] Smith D J. Clinopyroxene precursors to amphibole sponge in arc crust. Nat Commun, 2014, 5: 4329 CrossRef PubMed ADS Google Scholar

[81] Song Y M, Xie Y, Malyarchuk V. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497: 95-99 CrossRef PubMed ADS Google Scholar

[82] Shahrjerdi D, Bedell S W. Extremely Flexible Nanoscale Ultrathin Body Silicon Integrated Circuits on Plastic. Nano Lett, 2013, 13: 315-320 CrossRef PubMed ADS Google Scholar

[83] Shahrjerdi D, Bedell S W, Bayram C. Ultralight High-Efficiency Flexible InGaP/(In)GaAs Tandem Solar Cells on Plastic. Adv Energy Mater, 2013, 3: 566-571 CrossRef Google Scholar

[84] Rojas J P, Torres Sevilla G A, Hussain M M. Can We Build a Truly High Performance Computer Which is Flexible and Transparent?. Sci Rep, 2013, 3: 2609 CrossRef PubMed ADS Google Scholar

[85] Ghoneim M T, Rojas J P, Young C D. Electrical Analysis of High Dielectric Constant Insulator and Metal Gate Metal Oxide Semiconductor Capacitors on Flexible Bulk Mono-Crystalline Silicon. IEEE Trans Rel, 2015, 64: 579-585 CrossRef Google Scholar

[86] Kao H, Yeh C S, Chen M T. Characterization and reliability of nMOSFETs on flexible substrates under mechanical strain. Micro Electron Reliability, 2012, 52: 999-1004 CrossRef Google Scholar

[87] Balde J W. Foldable flex and thinned silicon multichip packaging technology. In: Emerging Technology in Advanced Packaging Series. Berlin: Springer, 2003. Google Scholar

[88] Seok J, Sukam C P, Kim A T. Material removal model for chemical-mechanical polishing considering wafer flexibility and edge effects. Wear, 2004, 257: 496-508 CrossRef Google Scholar

[89] Wang S C, Yeh C F, Hsu C T. Fabricating Thin-Film Transistors on Plastic Substrates Using Spin Etching and Device Transfer. J Electrochem Soc, 2005, 152: G227 CrossRef Google Scholar

[90] Wang S, Weil B D, Li Y. Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials. Nano Lett, 2013, 13: 4393-4398 CrossRef PubMed ADS Google Scholar

[91] Torres Sevilla G A, Ghoneim M T, Fahad H. Flexible nanoscale high-performance FinFETs.. ACS Nano, 2014, 8: 9850-9856 CrossRef PubMed Google Scholar

[92] Fang H, Zhao J, Yu K J. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc Natl Acad Sci USA, 2016, 113: 11682-11687 CrossRef PubMed ADS Google Scholar

[93] Fang H, Yu K J, Gloschat C. Capacitively Coupled Arrays of Multiplexed Flexible Silicon Transistors for Long-Term Cardiac Electrophysiology.. Nat Biomed Eng, 2017, 1: 0038 CrossRef PubMed Google Scholar

[94] Song E, Lee Y K, Li R. Transferred, Ultrathin Oxide Bilayers as Biofluid Barriers for Flexible Electronic Implants. Adv Funct Mater, 2018, 28: 1702284 CrossRef Google Scholar

[95] Chang J K, Fang H, Bower C A. Materials and processing approaches for foundry-compatible transient electronics. Proc Natl Acad Sci USA, 2017, 114: E5522-E5529 CrossRef PubMed ADS Google Scholar

[96] Guo Q, Zhang M, Xue Z. Deterministic Assembly of Flexible Si/Ge Nanoribbons via Edge-Cutting Transfer and Printing for van der Waals Heterojunctions.. Small, 2015, 11: 4140-4148 CrossRef PubMed Google Scholar

[97] Chang J K, Chang H P, Guo Q. Biodegradable Electronic Systems in 3D, Heterogeneously Integrated Formats.. Adv Mater, 2018, 30: 1704955 CrossRef PubMed Google Scholar

[98] Jang S, Hwang E, Lee Y. Multifunctional Graphene Optoelectronic Devices Capable of Detecting and Storing Photonic Signals. Nano Lett, 2015, 15: 2542-2547 CrossRef PubMed ADS Google Scholar

[99] Sun T, Wang Y, Yu W. Small, 2017, 13: 1701881 CrossRef PubMed Google Scholar

[100] Kufer D, Lasanta T, Bernechea M. Interface Engineering in Hybrid Quantum Dot-2D Phototransistors. ACS Photonics, 2016, 3: 1324-1330 CrossRef Google Scholar

[101] Wang L, Meric I, Huang P Y. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science, 2013, 342: 614-617 CrossRef PubMed ADS Google Scholar

[102] Foo C Y, Sumboja A, Tan D J H. Adv Energy Mater, 2014, 4: 1400236 CrossRef Google Scholar

[103] Fu K K, Wang Z, Dai J. Transient Electronics: Materials and Devices. Chem Mater, 2016, 28: 3527-3539 CrossRef Google Scholar

[104] Carlson A, Bowen A M, Huang Y. Transfer printing techniques for materials assembly and micro/nanodevice fabrication.. Adv Mater, 2012, 24: 5284-5318 CrossRef PubMed Google Scholar

[105] Sachid A B, Tosun M, Desai S B. Monolithic 3D CMOS Using Layered Semiconductors.. Adv Mater, 2016, 28: 2547-2554 CrossRef PubMed Google Scholar

[106] Zhu X, Lu J, Pan H. Reduction in Modulus of Suspended Sub-2 nm Single Crystalline Silicon Nanomembranes. Adv Mater Interfaces, 2017, 4: 1700529 CrossRef Google Scholar

[107] Harris K D, Elias A L, Chung H J. Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci, 2016, 51: 2771-2805 CrossRef ADS Google Scholar

[108] Hussain A M, Hussain M M. CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications.. Adv Mater, 2016, 28: 4219-4249 CrossRef PubMed Google Scholar

[109] Asadirad M, Pouladi S, Shervin S. Numerical Simulation for Operation of Flexible Thin-Film Transistors With Bending. IEEE Electron Device Lett, 2017, 38: 217-220 CrossRef ADS Google Scholar

[110] Ghoneim M T, Kutbee A, Ghodsi Nasseri F. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric. Appl Phys Lett, 2014, 104: 234104 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Unique properties and applications of nanomembranes. (a) Quantumconfinement effect in silicon nanomembrane leads to splitting of theconduction band valleys [9]@Copyright 2010 American Chemical Society. (b)$I_{\rm~DS}$-$V_{\rm~DS}$ properties of the rough Si nanomembrane in the dark andunder light illumination. The inset displays the atomic force microscope image of a rough silicon nanomembrane [10]@Copyright 2009 American Chemical Society. (c)Vertical-cavity surface-emitting laser device with stacked siliconnanomembranes and InGaAsP quantum well active layer [11]@Copyright 2012 Macmillan Publishers Limited. (d) Optical and sanning electron microscopy images ofthe Si nanomembrane thermal detectors [12]@Copyright 2018 AIP Publishing LLC

  • Figure 2

    (Color online) Transfer first, device-last process and typical applications.(a) Release and transfer nanomembrane in solution (wet process). (b) Transfernanomembrane by elastomeric stamp (dry process). (c) A metal grid with asilicon nanomembrane by wet process [48]@2016 Macmillan Publishers Ltd. (d) Asilicon nanomembrane covered on an optical fiber for leakage detection [49]@Copyright 2017 American Chemical Society. (e) Silicon nanomembrane field-effecttransistor fabricated with dry process [50]@Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.(f) Structure scheme and optical image of germanium nanomembrane wrinklephotodetectors [51]@Copyright 2016 IEEE

  • Figure 3

    (Color online) Nanomembrane device system. (a) Optical image of siliconnanomembrane electrocorticography system (left) and recorded brain wave of amouse (right) [65]@Copyright 2016 Macmillan Publishers Limited. (b) Schematic illustrationof silicon nanomembrane hemispherical electronic eye systems (left) and highresolution image acquired by this system matching the concave hemisphericalsurface of focal plane array [66]@Copyright 2017 The Authors

  • Figure 4

    (Color online) Device-first, transfer-last process and typical applications.(a) Thinning down process of flexible nanomembrane devices on wafer.(b) Optical image of flexible silicon nanomembrane field-effect transistorfabricated with device-first process. (c) Optical image of flexible siliconnanomembrane sensing system with 396 nodes for electrophysiological mapping [93]@Copyright 2017 Macmillan Publishers Limited, part of Springer Nature

  • Figure 5

    (Color online) 3D integrated nanomembranes and circuit system. (a) Si/Genanoribbons van der Waals heterojunctions and its electronic property.Inset, transmission electron microscope image [96]@Copyright 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) 3D stacked silicon nanomembrane logic circuitsystem on thin sheet of poly(lactic-co-glycolic acid) [97]@Copyright 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1