SCIENTIA SINICA Informationis, Volume 49, Issue 4: 385-404(2019) https://doi.org/10.1360/N112018-00110

Advances in energy harvesting from heartbeat using flexible smart devices: state-of-the-art review

More info
  • ReceivedMay 1, 2018
  • AcceptedMay 7, 2018
  • PublishedMar 1, 2019


Implantable medical devices are mostly powered by battery that needs to be recharged or replaced frequently, resulting in the additional risk and economic burden on the patients. Harvesting the energy from the mechanical motion of biological organs using flexible electronics has attracted considerable research interest. The energy harvested from the heartbeat adequately provides sustainable power to these devices, whose energy consumption is approximately 10 $\mu~$W. Herein, we present a comprehensive review on the energy harvested from heartbeat through experiments and theoretical modeling, including the traditional strategies based on rigid solutions and most recent efforts on developing flexible piezoelectric devices. The research challenges and potential trends on this topic are also discussed.

Funded by




[1] Korpas D. Implantable Cardiac Devices Technology. New York: Springer, 2013. Google Scholar

[2] Landolina M, Curnis A, Morani G. Longevity of implantable cardioverter-defibrillators for cardiac resynchronization therapy in current clinical practice: an analysis according to influencing factors, device generation, and manufacturer.. Europace, 2015, 17: 1251-1258 CrossRef PubMed Google Scholar

[3] Shintaku H, Nakagawa T, Kitagawa D. Development of piezoelectric acoustic sensor with frequency selectivity for artificial cochlea. Senss Actuators A-Phys, 2010, 158: 183-192 CrossRef Google Scholar

[4] Bergenstal R M, Klonoff D C, Garg S K. Threshold-based insulin-pump interruption for reduction of hypoglycemia.. N Engl J Med, 2013, 369: 224-232 CrossRef PubMed Google Scholar

[5] Schachter S C, Saper C B. Vagus Nerve Stimulation. Epilepsia, 1998, 39: 677-686 CrossRef Google Scholar

[6] Heller A. Implanted Electrochemical Glucose Sensors for the Management of Diabetes. Annu Rev Biomed Eng, 1999, 1: 153-175 CrossRef Google Scholar

[7] LaVan D A, McGuire T, Langer R. Small-scale systems for in vivo drug delivery.. Nat Biotechnol, 2003, 21: 1184-1191 CrossRef PubMed Google Scholar

[8] Haddad S A P, Houben R P M, Serdijin W A. The evolution of pacemakers. IEEE Eng Med Biol Mag, 2006, 25: 38-48 CrossRef Google Scholar

[9] Mond H G, Proclemer A. The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009--a World Society of Arrhythmia's project.. Pacing Clinical ElectroPhysiol, 2011, 34: 1013-1027 CrossRef PubMed Google Scholar

[10] Ohm O J, Danilovic D. Improvements in Pacemaker Energy Consumption and Functional Capability: Four Decades of Progress. Pacing Clin Electro, 1997, 20: 2-9 CrossRef Google Scholar

[11] Poole J E, Gleva M J, Mela T. Complication rates associated with pacemaker or implantable cardioverter-defibrillator generator replacements and upgrade procedures: results from the REPLACE registry.. Circulation, 2010, 122: 1553-1561 CrossRef PubMed Google Scholar

[12] Griffith M J, Mounsey J P, Bexton R S. Mechanical, but not infective, pacemaker erosion may be successfully managed by re-implantation of pacemakers.. Heart, 1994, 71: 202-205 CrossRef Google Scholar

[13] Kim K H, Lee K Y, Seo J S. Paper-based piezoelectric nanogenerators with high thermal stability.. Small, 2011, 7: 2577-2580 CrossRef PubMed Google Scholar

[14] Starner T. Human-powered wearable computing. IBM Syst J, 1996, 35: 618-629 CrossRef Google Scholar

[15] Kerzenmacher S, Ducrée J, Zengerle R. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sources, 2008, 182: 1-17 CrossRef ADS Google Scholar

[16] Jin Q, Shi W, Zhao Y. Cellulose Fiber-Based Hierarchical Porous Bismuth Telluride for High-Performance Flexible and Tailorable Thermoelectrics. ACS Appl Mater Interfaces, 2018, 10: 1743-1751 CrossRef Google Scholar

[17] H?sler E, Stein L, Harbauer G. Implantable physiological power supply with PVDF film. Ferroelectrics, 1984, 60: 277-282 CrossRef Google Scholar

[18] Zhang H, Zhang X S, Cheng X. A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies. Nano Energ, 2015, 12: 296-304 CrossRef Google Scholar

[19] Parsonnet V, Myers G H, Zucker I R, et al. A cardiac pacemaker using biologic energy sources. T Am Soc Art Int Org, 1963, 9: 174--177. Google Scholar

[20] Li Z, Zhu G, Yang R. Muscle-driven in vivo nanogenerator.. Adv Mater, 2010, 22: 2534-2537 CrossRef PubMed Google Scholar

[21] Owens B B. Batteries for Implantable Biomedical Devices. New York: Plenum Press, 1986. Google Scholar

[22] Silveira F, Flandre D. Low Power Analog CMOS for Cardiac Pacemakers. Berlin: Springer, 2004. Google Scholar

[23] Glynne-Jones P, Tudor M J, Beeby S P. An electromagnetic, vibration-powered generator for intelligent sensor systems. Senss Actuators A-Phys, 2004, 110: 344-349 CrossRef Google Scholar

[24] Roundy S J. Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Dissertation for Ph.D. Degree. Berkeley: University of California, Berkeley, 2003. Google Scholar

[25] Zhang H, Yang Y, Hou T C. Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energ, 2013, 2: 1019-1024 CrossRef Google Scholar

[26] Cheng X, Meng B, Zhang X. Wearable electrode-free triboelectric generator for harvesting biomechanical energy. Nano Energ, 2015, 12: 19-25 CrossRef Google Scholar

[27] Sirohi J, Mahadik R. Piezoelectric wind energy harvester for low-power sensors. J Intel Mat Syst Str, 2015, 22: 2215--2228. Google Scholar

[28] Deterre M, Boutaud B, Dalmolin R, et al. Energy harvesting system for cardiac implant applications. In: Porceedings of Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2011. 387--391. Google Scholar

[29] Karami M A, Inman D J. Analytical Modeling and Experimental Verification of the Vibrations of the Zigzag Microstructure for Energy Harvesting. J Vib Acoust, 2011, 133: 011002 CrossRef Google Scholar

[30] Ansari M H, Karami M A. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers. Smart Mater Struct, 2017, 26: 065001 CrossRef PubMed ADS Google Scholar

[31] Amin Karami M, Inman D J. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl Phys Lett, 2012, 100: 042901 CrossRef ADS Google Scholar

[32] Tashiro R, Kabei N, Katayama K. Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artificial Organs, 2002, 5: 239-245 CrossRef Google Scholar

[33] Goto H, Sugiura T, Harada Y. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med Biol Eng Comput, 1999, 37: 377-380 CrossRef Google Scholar

[34] Zurbuchen A, Pfenniger A, Stahel A. Energy harvesting from the beating heart by a mass imbalance oscillation generator.. Ann Biomed Eng, 2013, 41: 131-141 CrossRef PubMed Google Scholar

[35] Pfenniger A, Jonsson M, Zurbuchen A. Energy harvesting from the cardiovascular system, or how to get a little help from yourself.. Ann Biomed Eng, 2013, 41: 2248-2263 CrossRef PubMed Google Scholar

[36] Garnier F, Hajlaoui R, Yassar A. All-Polymer Field-Effect Transistor Realized by Printing Techniques. Science, 1994, 265: 1684-1686 CrossRef PubMed ADS Google Scholar

[37] Bao Z, Feng Y, Dodabalapur A. High-Performance Plastic Transistors Fabricated by Printing Techniques. Chem Mater, 1997, 9: 1299-1301 CrossRef Google Scholar

[38] Feng X, Lu B W, Wu J, et al. Review on stretchable and flexible inorganic electronics. Acta Phys Sin, 2014, 63: 1--18. Google Scholar

[39] Rocha J G, Goncalves L M, Rocha P F. Energy Harvesting From Piezoelectric Materials Fully Integrated in Footwear. IEEE Trans Ind Electron, 2010, 57: 813-819 CrossRef Google Scholar

[40] Wang Z L. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 2006, 312: 242-246 CrossRef PubMed ADS Google Scholar

[41] Jung J H, Lee M, Hong J I. Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator.. ACS Nano, 2011, 5: 10041-10046 CrossRef PubMed Google Scholar

[42] Pantano A, M. Parks D, Boyce M C. Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids, 2004, 52: 789--821. Google Scholar

[43] Lipomi D J, Vosgueritchian M, Tee B C K. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotech, 2011, 6: 788-792 CrossRef PubMed ADS Google Scholar

[44] Zhang H, Xiang L, Yang Y. High-Performance Carbon Nanotube Complementary Electronics and Integrated Sensor Systems on Ultrathin Plastic Foil. ACS Nano, 2018, 12: 2773-2779 CrossRef Google Scholar

[45] Wang Z L, Yang R, Zhou J. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mater Sci Eng-R-Rep, 2010, 70: 320-329 CrossRef Google Scholar

[46] Dagdeviren C, Yang B D, Su Y. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci USA, 2014, 111: 1927-1932 CrossRef PubMed ADS Google Scholar

[47] Cheng T, Zhang Y, Lai W Y. Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability.. Adv Mater, 2015, 27: 3349-3376 CrossRef PubMed Google Scholar

[48] Jiang H, Khang D Y, Song J. Finite deformation mechanics in buckled thin films on compliant supports. Proc Natl Acad Sci USA, 2007, 104: 15607-15612 CrossRef PubMed ADS Google Scholar

[49] Jiang H, Sun Y, Rogers J A, et al. Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates. Int J Solids Struct, 2008, 45: 2014--2023. Google Scholar

[50] Kim D H, Song J, Choi W M. From the Cover: Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA, 2008, 105: 18675-18680 CrossRef PubMed ADS Google Scholar

[51] Ko H C, Shin G, Wang S. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements.. Small, 2009, 5: 2703-2709 CrossRef PubMed Google Scholar

[52] Zhang Y, Fu H, Su Y. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater, 2013, 61: 7816-7827 CrossRef Google Scholar

[53] Fu H, Nan K, Bai W. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat Mater, 2018, 17: 268-276 CrossRef PubMed ADS Google Scholar

[54] Lu B, Chen Y, Ou D. Ultra-flexible Piezoelectric Devices Integrated with Heart to Harvest the Biomechanical Energy. Sci Rep, 2015, 5: 16065 CrossRef PubMed ADS Google Scholar

[55] Jeong C K, Jae Hyun Han, Haribabu Palneedi, et al. Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater, 2017, 5: 074102. Google Scholar

[56] Zhu G, Yang R, Wang S. Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array. Nano Lett, 2010, 10: 3151-3155 CrossRef PubMed ADS Google Scholar

[57] Wu W, Cheng L, Bai S. Electrospinning lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires and their application in energy harvesting. J Mater Chem A, 2013, 1: 7332-7338 CrossRef Google Scholar

[58] Briscoe J, Jalali N, Woolliams P. Measurement techniques for piezoelectric nanogenerators. Energy Environ Sci, 2013, 6: 3035-3045 CrossRef Google Scholar

[59] Lu C, Wu S, Lu B, et al. Ultrathin flexible piezoelectric sensors for monitoring eye fatigue. J Micromech Microeng, 2017, 28, in press. Google Scholar

[60] Mohiuddin M M, Reichart B, Byrne G W. Current status of pig heart xenotransplantation.. Int J Surgery, 2015, 23: 234-239 CrossRef PubMed Google Scholar

[61] Zhang W, Wang L F, Rong T H, et al. Ultra-flexible energy harvester:in vivo testing on epicardium. J Med Res, 2015, 44: 29--33. Google Scholar

[62] Wang L F, Ma W G, Zhang W G, et al. Stretchability and flexibility of an ultra-flexible piezoelectric device: in vivo testing. J Med Res, 2016, 45: 31--36. Google Scholar

[63] Li Y, Song J, Fang B. Surface effects on the postbuckling of nanowires. J Phys D-Appl Phys, 2011, 44: 425304 CrossRef ADS arXiv Google Scholar

[64] Chen Y, Lu B W, Ou D P. Mechanics of flexible and stretchable piezoelectrics for energy harvesting. Sci China-Phys Mech Astron, 2015, 58: 594601 CrossRef ADS Google Scholar

[65] Su Y, Li S, Li R. Splitting of neutral mechanical plane of conformal, multilayer piezoelectric mechanical energy harvester. Appl Phys Lett, 2015, 107: 041905 CrossRef ADS Google Scholar

[66] Su Y, Dagdeviren C, Li R. Measured Output Voltages of Piezoelectric Devices Depend on the Resistance of Voltmeter. Adv Funct Mater, 2015, 25: 5320-5325 CrossRef Google Scholar

[67] Zhang Y, Chen Y, Lu B. Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment. J Appl Mech, 2016, 83: 061007 CrossRef ADS Google Scholar

[68] Zhang Y, Lu B, Lü C. Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration. Proc R Soc A, 2017, 473: 20170615 CrossRef PubMed ADS Google Scholar

[69] Ding H J, Chen W Q. Three Dimensional Problems of Piezoelasticity. New York: Nova Science Publishers, 2001. Google Scholar

[70] Lallart M, Inman D J, Guyomar D. Transient Performance of Energy Harvesting Strategies under Constant Force Magnitude Excitation. J Intelligent Material Syst Struct, 2010, 21: 1279-1291 CrossRef Google Scholar

[71] Su Y, Li S, Huan Y. The universal and easy-to-use standard of voltage measurement for quantifying the performance of piezoelectric devices. Extreme Mech Lett, 2017, 15: 10-16 CrossRef Google Scholar

[72] Lang R M, Bierig M, Devereux R B. Recommendations for chamber quantification. J Am Soc Echocard, 2005, 18: 1440-1463 CrossRef PubMed Google Scholar

[73] Corsi C, Saracino G, Sarti A. Left ventricular volume estimation for real-time three-dimensional echocardiography.. IEEE Trans Med Imag, 2002, 21: 1202-1208 CrossRef PubMed Google Scholar

[74] Liedtke A J, Nellis S, Neely J R. Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine.. Circ Res, 1978, 43: 652-661 CrossRef Google Scholar

[75] Heitman Jr. H, Hughes E H. The Effects of Air Temperature and Relative Humidity on the Physiological well being of Swine. J Animal Sci, 1949, 8: 171-181 CrossRef Google Scholar

[76] Bitzén U, Niklason L, G?ransson I. Measurement and mathematical modelling of elastic and resistive lung mechanical properties studied at sinusoidal expiratory flow.. Clinical Physiol Funct Imag, 2010, 30: 439-446 CrossRef PubMed Google Scholar

  • Table 1   Traditional heartbeat energy harvesters
    Ref. In vitro/ Energy Volume (cm$^{3})$ Mass (g) Output power Power density
    in vivo harvesting mechanism ($\mu$W) ($\mu$W/cm$^{3})$
    $[29]$ in vitro Piezoelectricity 1.2 11 10 8.3
    $[30]$ in vitro Piezoelectricity 2 20 15 7.5
    $[32]$ in vitro Electrostatic 75 36 0.48
    $[33]$ in vivo Electromagnetic 1 7 44 44
    $[34]$ in vivo Electromagnetic 0.5 3.7 16 32

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号