logo

SCIENTIA SINICA Informationis, Volume 49, Issue 4: 369-384(2019) https://doi.org/10.1360/N112018-00146

Impurity engineering of Czochralski silicon: effects of germanium-doping

More info
  • ReceivedJun 5, 2018
  • AcceptedDec 10, 2018
  • PublishedMar 29, 2019

Abstract

In the past decades, Czocharalski (CZ) silicon has been extensively and intensively studied as the base material for manufacturing integrated circuits (ICs). The defects and mechanical strength of CZ silicon significantly influence the manufacturing yield of ICs. Traditionally, studies have considered that the impurities, except the electrically active dopants and inevitable oxygen in CZ silicon, should be as few as possible. From this viewpoint, the defect control and improvement in mechanical strength essentially rely on the optimization of crystal growth conditions. To overcome the aforementioned restrictions, this study aims to propose the impurity engineering of CZ silicon, which indicates that co-doping a specific impurity into the CZ silicon can manipulate the behavior of extended defects owing to the interaction of point defects and such impurity atoms and thus improve the mechanical strength of CZ silicon. Herein, the research background and significance of impurity engineering of CZ silicon are first elucidated. Then, the effects of germanium-doping into CZ silicon, representing a case study of impurity engineering, are overviewed. Such effects involve the influences on the formation of defects, including the oxygen precipitates and voids, which are advantageous for fabricating ICs, and the improvement of mechanical strength of CZ silicon.


Funded by

国家自然科学基金(51532007)

国家自然科学基金(61674126)

国家自然科学基金(61721005)


References

[1] Yoshida Y, Langouche G. Defects and Impurities in Silicon Materials. Berlin: Springer, 2015. Google Scholar

[2] Sinno T, Dornberger E, von Ammon W. Defect engineering of Czochralski single-crystal silicon. Mater Sci Eng-R-Rep, 2000, 28: 149-198 CrossRef Google Scholar

[3] Yu X, Chen J, Ma X. Impurity engineering of Czochralski silicon. Mater Sci Eng-R-Rep, 2013, 74: 1-33 CrossRef Google Scholar

[4] Faber K T, Malloy K J. The Mechanical Properties of Semiconductors. Boston: Academic Press, 1992. Google Scholar

[5] Gong L, Ma X, Tian D. Formation of a denuded zone in nitrogen-doped Czochralski silicon wafer treated by ramping anneals. Semicond Sci Technol, 2005, 20: 228-232 CrossRef ADS Google Scholar

[6] Shabani M B. Low-Temperature Out-Diffusion of Cu from Silicon Wafers. J Electrochem Soc, 1996, 143: 2025-2029 CrossRef Google Scholar

[7] Tan T Y, Gardner E E, Tice W K. Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si. Appl Phys Lett, 1977, 30: 175-176 CrossRef ADS Google Scholar

[8] Gilles D, Weber E R, Hahn S K. Mechanism of internal gettering of interstitial impurities in Czochralski-grown silicon. Phys Rev Lett, 1990, 64: 196-199 CrossRef PubMed ADS Google Scholar

[9] Myers S M, Seibt M, Schro?ter W. Mechanisms of transition-metal gettering in silicon. J Appl Phys, 2000, 88: 3795-3819 CrossRef ADS Google Scholar

[10] Munakata T, Someya S, Tanasawa I. Effect of high frequency magnetic field on CZ silicon melt convection. Int J Heat Mass Transfer, 2004, 47: 4525-4533 CrossRef Google Scholar

[11] Huth S, Breitenstein O, Huber A. Localization and detailed investigation of gate oxide integrity defects in silicon MOS structures. MicroElectron Eng, 2001, 59: 109-113 CrossRef Google Scholar

[12] Falster R, Voronkov V V, Quast F. On the Properties of the Intrinsic Point Defects in Silicon: A Perspective from Crystal Growth and Wafer Processing. phys stat sol (b) 2000, 222: 219--244. Google Scholar

[13] Voronkov V V, Falster R. Grown-in microdefects, residual vacancies and oxygen precipitation bands in Czochralski silicon. J Cryst Growth, 1999, 204: 462-474 CrossRef ADS Google Scholar

[14] Sumino K. Deformation behavior of silicon. Metall Mat Trans A, 1999, 30: 1465-1479 CrossRef Google Scholar

[15] Yonenaga I, Sumino K, Hoshi K. Mechanical strength of silicon crystals as a function of the oxygen concentration. J Appl Phys, 1984, 56: 2346-2350 CrossRef ADS Google Scholar

[16] Fischer A, Kissinger G. Load induced stresses and plastic deformation in 450 mm silicon wafers. Appl Phys Lett, 2007, 91: 111911 CrossRef ADS Google Scholar

[17] Hu S M. Temperature Distribution and Stresses in Circular Wafers in a Row During Radiative Cooling. J Appl Phys, 1969, 40: 4413-4423 CrossRef ADS Google Scholar

[18] Mezhennyi M V, Mil'vidskii M G, Prostomolotov A I. Simulation of the stresses produced in large-diameter silicon wafers during thermal annealing. Phys Solid State, 2003, 45: 1884-1889 CrossRef ADS Google Scholar

[19] Yang D R, Yu X G. Nitrogen in silicon. Defect Diffusion Forum, 2004, 230: 199--220. Google Scholar

[20] Yu X, Yang D, Ma X. Grown-in defects in nitrogen-doped Czochralski silicon. J Appl Phys, 2002, 92: 188-194 CrossRef ADS Google Scholar

[21] Yu X, Yang D, Ma X. Oxidation-induced stacking faults and related grown-in oxygen precipitates in nitrogen-doped Czochralski silicon. Semicond Sci Technol, 2003, 18: 393-397 CrossRef ADS Google Scholar

[22] Li D, Yang D, Que D. Effects of nitrogen on dislocations in silicon during heat treatment. Physica B-Condensed Matter, 1999, 273-274: 553-556 CrossRef ADS Google Scholar

[23] Lu H, Yang D, Li L, et al. Thermal Warpage of Czochralski Silicon Wafers Grown under a Nitrogen Ambience. phys stat sol (a) 1998, 169: 193--198. Google Scholar

[24] Sueoka K, Akatsuka M, Yonemura M. Effect of Heavy Carbon, Nitrogen and Boron Doping on Oxygen Precipitation Behavior in Silicon Epitaxial Wafers. SSP, 2001, 82-84: 49-56 CrossRef Google Scholar

[25] Mezhennyi M V, Mil'vidskii M G, Reznik V Y. Specific features in the generation and motion of dislocations in silicon single crystals doped with nitrogen. Phys Solid State, 2002, 44: 1278-1283 CrossRef ADS Google Scholar

[26] Voronkov V V, Falster R. The effect of nitrogen on void formation in Czochralski silicon crystals. J Cryst Growth, 2005, 273: 412-423 CrossRef ADS Google Scholar

[27] Yang D, Chen J, Li H. Germanium effect on oxygen-related defects in Czochralski silicon. phys stat sol (a), 2006, 203: 685-695 CrossRef ADS Google Scholar

[28] Yang D, Chen J, Li H. Micro-defects in Ge doped Czochralski grown Si crystals. J Cryst Growth, 2006, 292: 266-271 CrossRef ADS Google Scholar

[29] Wu P, Chen J, Ma X. Effect of vacancies on oxygen precipitation in germanium-doped Czochralski silicon. J Appl Phys, 2010, 107: 073518 CrossRef ADS Google Scholar

[30] Dong P, Zhao J, Liang X B, et al. Oxygen precipitation in 10(20) cm(-3) germanium-doped Czochralski silicon. J Appl Phys, 2015, 117: 025705. Google Scholar

[31] Xu W, Chen J, Ma X. Characterization of a Czochralski grown silicon crystal doped with 1020 cm-3 germanium. Cryst Res Technol, 2011, 46: 10-13 CrossRef Google Scholar

[32] Li H, Yang D, Ma X. Germanium effect on oxygen precipitation in Czochralski silicon. J Appl Phys, 2004, 96: 4161-4165 CrossRef ADS Google Scholar

[33] Yang D, Chen J, Ma X. Impurity engineering of Czochralski silicon used for ultra large-scaled-integrated circuits. J Cryst Growth, 2009, 311: 837-841 CrossRef ADS Google Scholar

[34] Chen J, Yang D. Impurity engineering for germanium-doped Czochralski silicon wafer used for ultra large scale integrated circuit. phys stat sol (c), 2009, 6: 625-632 CrossRef ADS Google Scholar

[35] Yonenaga I. Growth and fundamental properties of SiGe bulk crystals. J Cryst Growth, 2005, 275: 91-98 CrossRef ADS Google Scholar

[36] Taishi T, Huang X, Yonenaga I. Dislocation behavior in heavily germanium-doped silicon crystal. Mater Sci Semiconductor Processing, 2002, 5: 409-412 CrossRef Google Scholar

[37] Yonenaga I. Growth and mechanical properties of GeSi bulk crystals. J Mater Sci-Mater Electron, 1999, 10: 329-333 CrossRef Google Scholar

[38] Liu E K, Zhu B S, Luo J S. Physics of Smiconductor: Version 7. Beijing: Publishing House of Electronics Industry, 2011. Google Scholar

[39] Istratov A A, Weber E R. Electrical properties and recombination activity of copper, nickel and cobalt in silicon. Appl Phys A-Mater Sci Processing, 1998, 66: 123-136 CrossRef ADS Google Scholar

[40] Chen J H. Microdefects and defect engineering of iso-group elements doped Czochralski used for large-scale integrated circuits. Dissertation for Ph.D. Degree. Hangzhou: Zhejaing University, 2008. Google Scholar

[41] Borghesi A, Pivac B, Sassella A. Oxygen precipitation in silicon. J Appl Phys, 1995, 77: 4169-4244 CrossRef ADS Google Scholar

[42] Hu S M, Patrick W J. Effect of oxygen on dislocation movement in silicon. J Appl Phys, 1975, 46: 1869-1874 CrossRef ADS Google Scholar

[43] Sumino K, Yonenaga I. Chapter 11 Oxygen Effect on Mechanical Properties. Semiconductors Semimetals, 1994, 42: 449--511. Google Scholar

[44] Brelot A, Charlemagne J. Infrared studies of low temperature electron irradiated silicon containing germanium oxygen and carbonâ. Radiat Effects, 1971, 9: 65-73 CrossRef Google Scholar

[45] Yang D, Yu X, Ma X. Germanium effect on void defects in Czochralski silicon. J Cryst Growth, 2002, 243: 371-374 CrossRef ADS Google Scholar

[46] Yu X, Yang D, Ma X. Intrinsic gettering in germanium-doped Czochralski crystal silicon crystals. J Cryst Growth, 2003, 250: 359-363 CrossRef ADS Google Scholar

[47] Wang L, Yang D. Structure of Ge-O complexes in Czochralski silicon. Physica B-Condensed Matter, 2009, 404: 58-60 CrossRef ADS Google Scholar

[48] Chen J, Yang D, Li H. Germanium effect on as-grown oxygen precipitation in Czochralski silicon. J Cryst Growth, 2006, 291: 66-71 CrossRef ADS Google Scholar

[49] Ma X, Tian D, Gong L. Effect of ramping anneals under inert or oxidizing ambient on the formation of oxygen precipitate denuded zone in nitrogen-doped Czochralski silicon wafers. phys stat sol (a), 2006, 203: 1934-1939 CrossRef ADS Google Scholar

[50] Cui C, Yang D, Yu X. Effect of nitrogen on denuded zone in Czochralski silicon wafer. Semicond Sci Technol, 2004, 19: 548-551 CrossRef ADS Google Scholar

[51] Chen J, Yang D, Ma X. Intrinsic gettering Based on rapid thermal annealing in germanium-doped Czochralski silicon. J Appl Phys, 2007, 101: 033526 CrossRef ADS Google Scholar

[52] Oehrlein G S, Lindstr?m J L, Corbett J W. Carbon-oxygen complexes as nuclei for the precipitation of oxygen in Czochralski silicon. Appl Phys Lett, 1982, 40: 241-243 CrossRef ADS Google Scholar

[53] Livingston F M, Messoloras S, Newman R C. An infrared and neutron scattering analysis of the precipitation of oxygen in dislocation-free silicon. J Phys C-Solid State Phys, 1984, 17: 6253-6276 CrossRef ADS Google Scholar

[54] Newman R C. Oxygen diffusion and precipitation in Czochralski silicon. J Phys-Condens Matter, 2000, 12: R335-R365 CrossRef ADS Google Scholar

[55] Izunome K, Shirai H, Kashima K. Oxygen precipitation in Czochralski-grown silicon wafers during hydrogen annealing. Appl Phys Lett, 1996, 68: 49-50 CrossRef ADS Google Scholar

[56] Chen J, Yang D, Ma X. Investigation of intrinsic gettering for germanium doped Czochralski silicon wafer. J Appl Phys, 2007, 101: 113512 CrossRef ADS Google Scholar

[57] Bergholz W, Gilles D. Impact of Research on Defects in Silicon on the Microelectronic Industry. phys stat sol (b) 2000, 222: 5--23. Google Scholar

[58] Nishikawa H, Tanaka T, Yanase Y. Formation of Grown-in Defects during Czochralski Silicon Crystal Growth. Jpn J Appl Phys, 1997, 36: 6595-6600 CrossRef ADS Google Scholar

[59] Itsumi M, Akiya H, Ueki T. Octahedral-Structured Gigantic Precipitates as the Origin of Gate-Oxide Defects in Metal-Oxide-Semiconductor Large-Scale-Integrated Circuits. Jpn J Appl Phys, 1996, 35: 812-817 CrossRef ADS Google Scholar

[60] Ryuta J, Morita E, Tanaka T. Crystal-Originated Singularities on Si Wafer Surface after SC1 Cleaning. Jpn J Appl Phys, 1990, 29: L1947-L1949 CrossRef ADS Google Scholar

[61] Graf D. Characterization of Crystal Quality by Crystal Originated Particle Delineation and the Impact on the Silicon Wafer Surface. J Electrochem Soc, 1998, 145: 275-284 CrossRef Google Scholar

[62] Kato M, Yoshida T, Ikeda Y. Transmission Electron Microscope Observation of “IR Scattering Defects” in As-Grown Czochralski Si Crystals. Jpn J Appl Phys, 1996, 35: 5597-5601 CrossRef ADS Google Scholar

[63] Yu X, Yang D, Ma X. Hydrogen annealing of grown-in voids in nitrogen-doped Czochralski grown silicon. Semicond Sci Technol, 2003, 18: 399-403 CrossRef ADS Google Scholar

[64] Chen J, Yang D, Li H. Crystal-originated particles in germanium-doped Czochralski silicon crystal. J Cryst Growth, 2007, 306: 262-268 CrossRef ADS Google Scholar

[65] Vanhellemont J, Zhang X, Xu W. On the assumed impact of germanium doping on void formation in Czochralski-grown silicon. J Appl Phys, 2010, 108: 123501 CrossRef ADS Google Scholar

[66] Voronkov V V, Falster R. Vacancy-type microdefect formation in Czochralski silicon. J Cryst Growth, 1998, 194: 76-88 CrossRef ADS Google Scholar

[67] Cook R F. Strength and sharp contact fracture of silicon. J Mater Sci, 2006, 41: 841-872 CrossRef ADS Google Scholar

[68] Chen J, Yang D, Ma X. Influence of germanium doping on the mechanical strength of Czochralski silicon wafers. J Appl Phys, 2008, 103: 123521 CrossRef ADS Google Scholar

[69] Yonenaga I, Sumino K. Influence of oxygen precipitation along dislocations on the strength of silicon crystals. J Appl Phys, 1996, 80: 734-738 CrossRef ADS Google Scholar

[70] Senkader S, Jurkschat K, Gambaro D, et al. On the locking of dislocations by oxygen in silicon. Philos Mag A, 2001, 81: 759--775. Google Scholar

[71] Dash W C. Growth of Silicon Crystals Free from Dislocations. J Appl Phys, 1959, 30: 459-474 CrossRef ADS Google Scholar

[72] Taishi T, Huang X, Yonenaga I. Dislocation-free Czochralski Si crystal growth without a thin neck: dislocation behavior due to incomplete seeding. J Cryst Growth, 2003, 258: 58-64 CrossRef ADS Google Scholar

[73] Huang X, Sato T, Nakanishi M. High Strength Si Wafers with Heavy B and Ge Codoping. Jpn J Appl Phys, 2003, 42: L1489-L1491 CrossRef ADS Google Scholar

[74] Li H, Yang D, Yu X. The effect of germanium doping on oxygen donors in Czochralski-grown silicon. J Phys-Condens Matter, 2004, 16: 5745-5750 CrossRef ADS Google Scholar

[75] Wang P, Yu X, Chen P. Germanium-doped Czochralski silicon for photovoltaic applications. Sol Energy Mater Sol Cells, 2011, 95: 2466-2470 CrossRef Google Scholar

[76] Yu X, Wang P, Chen P. Suppression of boron-oxygen defects in p-type Czochralski silicon by germanium doping. Appl Phys Lett, 2010, 97: 051903 CrossRef ADS Google Scholar

[77] Vanhellemont J, Chen J, Lauwaert J. Germanium doping for improved silicon substrates and devices. J Cryst Growth, 2011, 317: 8-15 CrossRef ADS Google Scholar

[78] Londos C A, Sgourou E N, Hall D. Vacancy-oxygen defects in silicon: the impact of isovalent doping. J Mater Sci-Mater Electron, 2014, 25: 2395-2410 CrossRef Google Scholar

[79] Arivanandhan M, Gotoh R, Fujiwara K. Grown-in microdefects and photovoltaic characteristics of heavily Ge co-doped Czochralski-grown p-type silicon crystals. Scripta Mater, 2013, 69: 686-689 CrossRef Google Scholar

[80] Sueoka K, Kamiyama E, Vanhellemont J. Density functional theory study on the impact of heavy doping on Si intrinsic point defect properties and implications for single crystal growth from a melt. J Appl Phys, 2013, 114: 153510 CrossRef ADS Google Scholar

[81] Vanhellemont J, Suezawa M, Yonenaga I. On the impact of germanium doping on the vacancy formation energy in Czochralski-grown silicon. J Appl Phys, 2010, 108: 016105 CrossRef ADS Google Scholar

[82] Chroneos A, Grimes R W, Bracht H. Impact of germanium on vacancy clustering in germanium-doped silicon. J Appl Phys, 2009, 105: 016102 CrossRef ADS Google Scholar

  • Table 1   Parameters of the primary thermal cycles involved in the DRAMfabrication
    Step Process Temperature ($^\circ$C) Duration (min) Gas ambient Oxygen behavior (Remarked)
    800$~\to~$1200 80 N$_{2}$
    1 Out-diffusion 1200 60 O$_{2}$ Oxygen out-diffusion
    1200$~\to~$800 80 N$_{2}$
    2 Nitride 760 360 N$_{2}$ Nucleation of
    deposition oxygen precipitates
    800$~\to~$1050 50 N$_{2}$ Growth of
    3 Linear oxidation 1050 60 O$_{2}$ oxygen precipitates
    1050$~\to~$800 50 N$_{2}$
    High density 800$~\to~$1050 50 N$_{2}$ Growth of
    4 plasma 1050 60 N$_{2}$ oxygen precipitates
    densification 1050$~\to~$800 50 N$_{2}$
    800$~\to~$1050 50 N$_{2}$ Growth of
    5 Sacrificial oxidation 1050 60 O$_{2}$ oxygen precipitates
    1050$~\to~$800 50 N$_{2}$
    800$~\to~$1000 40 N$_{2}$ Growth of
    6 Well drive-in 1000 60 N$_{2}$ oxygen precipitates
    1000$~\to~$800 40 N$_{2}$
  • Table 2   Statistical analysis on the warpage of CZ and GCZ wafers with asampling size of 300
    Statistical index CZ GCZ
    Mean warp ($\mu~$m) 15.9 11.6
    Standard deviation ($\mu~$m) 5.4 3.3

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1