logo

SCIENTIA SINICA Informationis, Volume 50, Issue 2: 289-302(2020) https://doi.org/10.1360/N112018-00247

A memristor-CMOS-based general-logic circuit and its applications

More info
  • ReceivedSep 10, 2018
  • AcceptedMar 21, 2019
  • PublishedFeb 12, 2020

Abstract

Memristors are a kind of information-storage device with resistance-switching dynamics. Due to the variable conductivity of memristive devices, their composite circuits can be used for implementation of logic operations. In this paper, a novel hybrid CMOS-memristor-based logic circuit is proposed for use in realizing four basic logic operations (AND, OR, XOR, XNOR) simultaneously within the same circuit. Compared with existing logic implementations (MAD Gates, MRL, IMPLY), the present circuit offers better performance and greater efficiency, owing to the significant reduction in the number of memristors used in the circuit and the power consumption. Thus, a new full-adder circuit and a binary-image-encryption circuit are designed. Unlike previous full-adder circuits, the proposed one has great advantages in terms of the number of circuit elements. In the proposed encryption circuit, there are two available encryption methods and the encryption key is independent of the circuit, which can improve the reliability of encryption results.


Funded by

国家重点研发计划(2018YFB1306600)

国家自然科学基金(61571372,61672436,61601376)

重庆市基础科学与前沿技术研究专项重点项目(cstc2017jcyjBX0050,cstc2016jcyjA0547)

中央高校基本科研业务费(XDJK2016A001,XDJK2017A005)

西南大学博士基金(SWU116005)


References

[1] Chua L O. Memristor-The missing circuit element. IEEE Trans Circuit Theor, 1971, 18: 507-519 CrossRef Google Scholar

[2] Strukov D B, Snider G S, Stewart D R. The missing memristor found. Nature, 2008, 453: 80-83 CrossRef PubMed ADS Google Scholar

[3] Williams R. How We Found The Missing Memristor. IEEE Spectr, 2008, 45: 28-35 CrossRef Google Scholar

[4] Biolek Z, Biolek D, Biolkova V, et al. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, 18: 210--214. Google Scholar

[5] Vourkas I, Batsos A, Sirakoulis G C. SPICE modeling of nonlinear memristive behavior. Int J Circ Theor Appl, 2015, 43: 553-565 CrossRef Google Scholar

[6] Emara A, Ghoneima M, El-Dessouky M. Differential 1T2M memristor memory cell for single/multi-bit RRAM modules. In: Proceedings of the 6th Computer Science and Electronic Engineering Conference (CEEC), Colchester, 2014. 69--72. Google Scholar

[7] Shaarawy N, Ghoneima M, Radwan A G. 2T2M memristor-based memory cell for higher stability RRAM modules. In: Proceedings of 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, 2015. 1418--1421. Google Scholar

[8] Sarwar S S, Saqueb S A N, Quaiyum F. Memristor-Based Nonvolatile Random Access Memory: Hybrid Architecture for Low Power Compact Memory Design. IEEE Access, 2013, 1: 29-34 CrossRef Google Scholar

[9] Duan S K, Hu X F, Wang L D, et al. Memristor-based RRAM with applications. Sci Sin Inform, 2012, 42: 754--769. Google Scholar

[10] Jiang Z, Duan S, Wang L, et al. A threshold adaptive memristor model analysis with application in image storage. In: Proceedings of International Conference on Information Science and Technology, 2015. 449--454. Google Scholar

[11] Duan S K, Hu X F, Wang L D. Memristor-based RRAM with applications. Sci China Inf Sci, 2012, 55: 1446-1460 CrossRef Google Scholar

[12] Hu X F, Duan S K, Wang L D. Memristive multilevel memory with applications in audio signal storage. In: Artificial Intelligence and Computational Intelligence. Berlin: Springer, 2011. 228--235. Google Scholar

[13] Luo L, Hu X, Duan S. Multiple memristor series-parallel connections with use in synaptic circuit design. IET Circ Dev Syst, 2017, 11: 123-134 CrossRef Google Scholar

[14] Dong Z, Qi D, He Y. Easily Cascaded Memristor-CMOS Hybrid Circuit for High-Efficiency Boolean Logic Implementation. Int J Bifurcation Chaos, 2018, 28: 1850149 CrossRef ADS Google Scholar

[15] Dong Z K, He Y F, Hu X F, et al. A Flexible Memristor-based Logic Unit Circuit and its Network Integration for Boolean Logic Implementation. IET Nanodielectrics, 2019. Google Scholar

[16] Zhang Y, Shen Y, Wang X. A Novel Design for Memristor-Based Logic Switch and Crossbar Circuits. IEEE Trans Circuits Syst I, 2015, 62: 1402-1411 CrossRef Google Scholar

[17] Zhang Y, Shen Y, Wang X. A Novel Design for a Memristor-Based or Gate. IEEE Trans Circuits Syst II, 2015, 62: 781-785 CrossRef Google Scholar

[18] Lehtonen E, Laiho M. Stateful implication logic with memristors. In: Proceedings of IEEE/ACM International Symposium on Nanoscale Architectures, Nanoarch, 2009. 33--36. Google Scholar

[19] Borghetti J, Snider G S, Kuekes P J. `Memristive' switches enable `stateful' logic operations via material implication. Nature, 2010, 464: 873-876 CrossRef PubMed ADS Google Scholar

[20] Kvatinsky S, Satat G, Wald N. Memristor-Based Material Implication (IMPLY) Logic: Design Principles and Methodologies. IEEE Trans VLSI Syst, 2014, 22: 2054-2066 CrossRef Google Scholar

[21] Kvatinsky S, Wald N, Satat G, et al. MRL - memristor ratioed logic. In: Proceedings of IEEE International Workshop on Cellular Nanoscale Networks and Their Applications, 2012. 1--6. Google Scholar

[22] Guckert L, Swartzlander E E. MAD Gates-Memristor Logic Design Using Driver Circuitry. IEEE Trans Circuits Syst II, 2017, 64: 171-175 CrossRef Google Scholar

[23] Teimoori M, Ahmadi A, Alirezaee S, et al. A novel hybrid CMOS-memristor logic circuit using memristor ratioed logic. In: Proceedings of IEEE Electrical and Computer Engineering, 2016. Google Scholar

[24] Teimoory M, Amirsoleimani A, Ahmadi A, et al. A hybrid memristor-CMOS multiplier design based on memristive universal logic gates. In: Proceedings of IEEE International Midwest Symposium on Circuits and Systems, 2017. 1422--1425. Google Scholar

[25] Xia Q, Robinett W, Cumbie M W. Memristor-CMOS Hybrid Integrated Circuits for Reconfigurable Logic. Nano Lett, 2009, 9: 3640-3645 CrossRef PubMed ADS Google Scholar

[26] Zhou Y, Li Y, Xu L. A hybrid memristor-CMOS XOR gate for nonvolatile logic computation. Phys Status Solidi A, 2016, 213: 1050-1054 CrossRef ADS Google Scholar

[27] Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern, 1979, 9: 62-66 CrossRef Google Scholar

  • Figure 1

    Proposed general logic circuits

  • Figure 2

    (Color online) The simulation result of proposed general logic circuit. (a) $V_{a}=~V_{L}=~``0",~V_{b}=~V_{L}=~``0"$; protectłinebreak (b) $V_{a}=~V_{L}=~``0",~V_{b}=~V_{H}=~``1"$; (c) $V_{a}=~V_{H}=~``1",~V_{b}=~V_{L}=~``0"$; (d) $V_{a}=~V_{H}=~``1",~V_{b}=~V_{H}=~``1"$

  • Figure 3

    Proposed memristor-CMOS hybrid full adder

  • Figure 4

    (Color online) The simulation results of memristor-CMOS hybrid full adder when $V_{\rm~cin}=V_{L}$. (a) $V_{A}=V_{L}$, $V_{B}=V_{L}$; (b) $V_{A}=V_{L}$, $V_{B}=V_{H}$; (c) $V_{A}=V_{H}$, $V_{B}=V_{L}$; (d) $V_{A}=V_{H}$, $V_{B}=V_{H}$

  • Figure 5

    (Color online) The simulation results of memristor-CMOS hybrid full adder when $V_{\rm~cin}=V_{L}$. (a) $V_{A}=V_{L}$, $V_{B}=V_{L}$; (b) $V_{A}=V_{L}$, $V_{B}=V_{H}$; (c) $V_{A}=V_{H}$, $V_{B}=V_{L}$; (d) $V_{A}=V_{H}$, $V_{B}=V_{H}$

  • Figure 6

    Proposed encryption cell based general logic circuit

  • Figure 7

    Proposed encryption circuit for binary image

  • Figure 8

    (Color online) Original imagematrix and key matrix. (a) Numeric “5" matrix; (b) key matrix

  • Figure 9

    (Color online) Encryption and decryption process

  • Figure 10

    Original Lena image and key

  • Figure 11

    Encryption and decryption process for Lena image

  • Table 1   Implementation process of proposed general logic circuit
    Logic Truth table InputNode voltage Output
    $a$ $b$
    AND 0 0$\to~$0 $V_{L}$ $V_{L}$ $X_1$$\to$$V_{L}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{L}$$\to$Logic“0”
    0 1$\to$0 $V_{L}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{L}$$\to$Logic“0”
    1 0$\to$0 $V_{H}$ $V_{L}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{L}$$\to$Logic“0”
    1 1$\to$1 $V_{H}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{H}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{H}$$\to$Logic“1”
    OR 0 0$\to$0 $V_{L}$ $V_{L}$ $X_1$$\to$$V_{L}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{L}$$\to$Logic“0”
    0 1$\to$1 $V_{L}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{H}$$\to$Logic“1”
    1 0$\to$1 $V_{H}$ $V_{L}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{H}$$\to$Logic“1”
    1 1$\to$1 $V_{H}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{H}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{H}$$\to$Logic“1”
    XOR 0 0$\to$0 $V_{L}$ $V_{L}$ $X_1$$\to$$V_{L}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{L}$$\to$Logic“0”
    0 1$\to$1 $V_{L}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{H}$$\to$Logic“1”
    1 0$\to$1 $V_{H}$ $V_{L}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{H}$$\to$Logic“1”
    1 1$\to$0 $V_{H}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{H}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{L}$$\to$Logic“0”
    XNOR 0 0$\to$1 $V_{L}$ $V_{L}$ $X_1$$\to$$V_{L}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{H}$$\to$Logic“1”
    0 1$\to$0 $V_{L}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{L}$$\to$Logic“0”
    1 0$\to$0 $V_{H}$ $V_{L}$ $X_1\to~V_{H}$, $X_2\to~V_{L}$, $X_3\to~V_{H}$, $X_4\to~V_{L}$ $V_{L}\to$Logic“0”
    1 1$\to$1 $V_{H}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{H}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{H}$$\to$Logic“1”
  • Table 2   Several logic circuits' performance for implementation of AND-OR-XOR-XNOR logic
    Logic circuits Components Generalized Power estimation Circuit design constraints Cascading
    Proposed general 4 memristorsExcellent 1.592 mW Low Excellent
    logic circuit4 MOSFETs
    13 memristors
    MAD Gates13 resistorsNormal 4.306 mW High Normal
    7 switches
    MRL 16 memristorsNormal 6.312 mW Low Excellent
    10 MOSFETs
    IMPLY 18 memristorsNormal 12.490 mW High Normal
    4 resistors
    Hybrid CMOS 8 memristorsGood 3.183 mW Low Excellent
    4 MOSFETs
  • Table 3   The truth table of full adder
    Carry voltage InputOutput
    $V_{A}$ $V_{B}$
    $V_{\rm~cin}~\to~V_{L}$ $V_{L}$$V_{L}$$V_{\rm~sum}$ $\to$ $V_{L}$, $V_{\rm~cout}$ $\to$ $V_{L}$
    $V_{L}$ $V_{H}$$V_{\rm~sum}$ $\to$ $V_{H}$, $V_{\rm~cout}$ $\to$ $V_{L}$
    $V_{H}$$V_{L}$$V_{\rm~sum}$ $\to$ $V_{H}$, $V_{\rm~cout}$ $\to$ $V_{L}$
    $V_{H}$$V_{H}$$V_{\rm~sum}$ $\to$ $V_{L}$, $V_{\rm~cout}$ $\to$ $V_{H}$
    $V_{\rm~cin}$ $\to$ $V_{H}$ $V_{L}$$V_{L}$$V_{\rm~sum}$ $\to$ $V_{H}$, $V_{\rm~cout}$ $\to$ $V_{L}$
    $V_{L}$$V_{H}$$V_{\rm~sum}$ $\to$ $V_{L}$, $V_{\rm~cout}$ $\to$ $V_{H}$
    $V_{H}$$V_{L}$$V_{\rm~sum}$ $\to$ $V_{L}$, $V_{\rm~cout}$ $\to$ $V_{H}$
    $V_{H}$$V_{H}$ $V_{\rm~sum}$ $\to$ $V_{H}$, $V_{\rm~cout}$ $\to$ $V_{H}$
  • Table 4   Comparison of the components required by the proposed circuits and prior work for $N$-bit adder
    MAD Gates MRL IMPLY Proposed general logic circuit
    Components $8N$ memristors$18N$ memristors$7N+1$ memristors$4N~$ memristors
    $2N+3$ drivers$3N$ drivers$7N$ drivers$2N+1$ drivers
    $9N$ resistors$4N$ MOSFETs$~N$ resistors$8N$ MOSFETs
    $14N$ switches$8N-1$ switches

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1